DE LA RECHERCHE À L'INDUSTRIE

Characterization and optimization of thin films using local magnetometer.

N. KATYAN, C. Z. ANTOINE, CEA, Irfu, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette Cedex, France (<u>navneeta.katyan@cea.fr</u>),

Nanometric $(d < \lambda_L)$, superconducting multilayers have been proposed to increase the maximum accelerating field of Nb RF cavities because of their high $H_{C1} > H_{C1}$ ^{Nb} [1]. Measuring H_{C1} on samples is not straightforward. **One tool** able to measure directly H_{c1} is a local magnetometer as being developed at CEA, Saclay. The sample to be measured should be larger than the coil, thus the sample acts as an infinite plane for the coil allowing to neglect the edge and demagnetizing effect. The transition is measured via 3rd harmonic analysis using a Lock-In amplifier.

Why the need of local magnetometer

Conventional Magnetometer (SQUID) give ambiguous results for very thin samples because of demagnetization

Experimental set up

- effects (field on the back and sides, alignment issues)
- With Squid measurement, the samples exhibit a strong transverse moment, due to misalignment, which is sufficient to let vortices enter the material.
- Exact field configuration not known (applied uniform field + remnant perpendicular moment).

Local magnetometer principle

- Based on infinite slab approx. (B ~ 0 @ 5-6 mm away from the center of the sample).
- ^{3rd} harmonic measurement of H_{C1} developed by INFM Napoli at low field and T > 4.5 K. [2,3]
- Design adapted at Saclay to approach accelerating cavities
- operating conditions ($T = 2 4 \text{ K}, B \ge 200 \text{ mT}$).
 - Coil able to provide 150 mT (upgrade ~ 400 mT)
 Experiment under vacuum (thermal insulation)
 Minimal contact b/w coil & sample (glass beads)
- A coil provides excitation field and detection of transition signal. If $\mathbf{r_{sample}} > 4 \mathbf{r_{coil}}$: Sample \equiv infinite plate => no edge effect and

Fig 1: Schematic of Local Magnetometer

Experiment problems

Fig 2: a) Coil (r=0.2cm);b) sample holder

- Radius of coil ≈ 0.25 cm << sample size $\geq \approx 2$ cm.
- T sensor is mounted beneath the sample holder disc.

Analysis :

- Lock-in amplifier gives reference signal I₀cos (ωt)
- Ref. signal is amplified and goes to the coil.
- Hall effect clamp sends the signal (exiting the coil) to L.I. Amp.
- Intensity and phase of the
- 3ω signal is monitored
- Acquisition of data w. LabVIEW

- Sample is zero field cooled @ T<T_c
- In Meissner state , sample = perfect magnetic mirror => no perturbation in the coil => only fundamental @ signal

Measurement techniques

1) Initial method

- Fixed $I_0 cos(\omega t)$ applied in the coil (field = $b_0 cos(\omega t)$)
- Temperature ramp ($T \rightarrow T_c$)
- Third harmonic signal (3 ω) appears @ T_{b0}, when b₀ reaches B_{C1} (T_{b0})
- Series of $b_0 =>$ series of transition T => reconstruction of $B_{C1}(T)$
 - Issue : thermal stabilization at high field (high current in the coil => heating + thermal inertia of cooling system)

Н

H_C

- etc.).
 - Refurbishment of grounding and shielding of all connecting wires were necessary.

Examples of Experimental results

/3

Conclusion and perspectives

- Main issue is thermal stabilization at high field because of high I in Cu coil, so experiment done under vacuum (thermal insulation).
- Semiconductor wire
- dissipative.
- R/W heads too difficult
- to assemble.

Fig 4: Field lines before and after the insertion of iron core inside the coil to enhance the magnetic field

2) New method

Fixed temperature

Icos (ωt) applied in the coil (field = bcos (ωt))

I (B) is increased slowly in the coil

Third harmonic signal (3ω) appears @ I_o , when b reaches $B_{C1}(T_b)$ Series of experiment at different T => reconstruction of $B_{C1}(T)$

Magnetometry has proven to be effective at measuring vortex penetration in conditions close to cavities operating condition and undergoing upgrade.

A series of ML samples with varying thickness to be measured in near future.

References:

[1] A. Gurevich, "Enhancement of RF breakdown field of SC by multilayer coating". Appl. Phys.Lett., 2006. 88: p. 012511.

[2] C.Z. Antoine, S. Berry, S. Bouat, J.F. Jacquot, J.C. Villegier, G. Lamura, and A. Gurevich, "Characterization of superconducting nanometric multilayer samples for SRF applications: first evidence of magnetic screening effect". PRST AB 2010. 13: p. 121001.

[3] G. Lamura, M. Aurino, A. Andreone, and J.C. Villegier, "First critical field measurements by third harmonic analysis". Journal of Applied Physics, 2009. 106: p. 053903 ..