STEPS TOWARDS SUPERCONDUCTING CW-LINAC FOR HEAVY IONS AT GSI

M.Miski-Oglu^{*,2}, M. Amberg^{2,3}, V. Gettmann², W. Barth^{1,2}, K. Aulenbacher^{2,4}, M. Heilmann¹, S. Mickat¹, S. Yaramyshev¹, M. Basten³, D. Bänsch³, F. Dziuba³, H. Podlech³, U. Ratzinger³

¹GSI Helmholtzzentrum, 64291 Darmstadt, Germany ²HIM, Helmholtzinstitut, 55099 Mainz, Germany ³IAP, Goethe University, 60438 Frankfurt, Germany ⁴KPH, Johannes Gutenberg-University, 5099 Mainz, Germany

Abstract

Providing heavy ion beams for the ambitious experiment program at GSI, the Universal Linear Accelerator (UNILAC) serves as a powerful high duty factor (25\%) accelerator. Beam time availability for SHE-research will be decreased due to the limitation

of the UNILAC providing a proper beam for FAIR simultaneously. To keep the GSI\hbox{-}SHE program competitive on a high level, a standalone sc cw-LINAC in combination with the upgraded GSI High Charge State injector is planned to build. In preparation

for this the first linac section (financed by HIM and partly by HGF-ARD-initiative) will be tested in 2015 as a demonstrator. After successful testing the construction of an extended cryomodule comprising two further, but shorter CH cavities is foreseen to

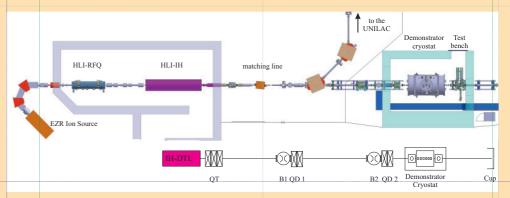
test until end of 2017. In this contribution the measurement of the beam parameters at the entrance of CW-Demonstartor, the preliminary simulation of beam dynamics and the preliminary mechanical layout of the entire string comprising three rf cavities and three solenoids in a cryo environment will be presented. As a final R&D step towards an

entire linac an advanced cryo modules comprising up to five CH cavities is envisaged for 2019 serving for first user experiments at the coulomb barrier.

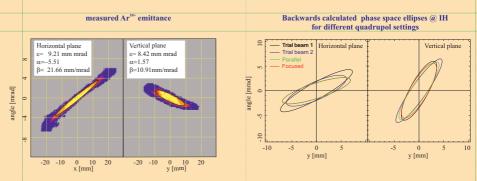
Demonstrator cavity

β	0.059			
Frequency	216.8MHz			
Cells	15			
Aperture	20mm			
Total length	691mm			
R/Q	3418 Ω			
E _a	5.1 MV/m			

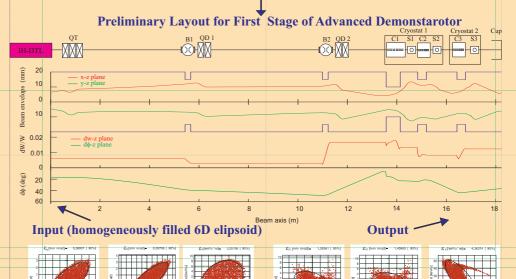
Short cavity



β	0.069 216.8MHz	
Frequency		
Cells	8	
Aperture	30 mm	
Total length	593 mm	
R/Q	1081 Ω	
E _a		


Time schedule

2015	tendering for the short CH-cavity is completed, two cavities are ordered		
Q4/2015	delivery of the CW demonstrator cryostat		
Q1/2016	delivery of the demonstrator cavity, SAT and offline systeme tests, tendering for 2nd cryostat		
Q2/2016	beam test of CW demonstrator		
Q4/2016	He test of 1 short cavity		
Q4/2017	delivery of two short cavities and cryostat		
Q4/2017	tendering and ordering of further 6 CH-cavities and cryostats		
2019	delivery of cavities, cryostats, beam test of adwanced demonstrator		


Footprint of Demonstrator Test Environment at GSI

Preparation for Comissioning

Measured Twiss Parameter are Starting Point for Beam Dynamic Calculations

Design Parameters of the Fisrt Stage of Adwanced Demonstrator

 Mass/Charge	Frequency	Beam current	Injection energy	Output energy
6	217 MHz	1mA	1.4 Mev/u	2.2 Mev/u

