Paper |
Title |
Page |
TUPB115 |
Improvements of the Mechanical, Vacuum and Cryogenic Procedures for European XFEL Cryomodule Testing |
906 |
|
- J. Świerbleski, M. Bednarski, B. Dzieza, W. Gaj, L. Grudnik, P. Halczynski, A. Kotarba, A. Krawczyk, K. Myalski, T. Ostrowicz, B. Prochal, J. Rafalski, M. Sienkiewicz, M. Skiba, M. Wartak, M. Wiencek, J. Zbroja, P. Ziolkowski
IFJ-PAN, Kraków, Poland
|
|
|
The European X-ray Free Electron Laser is under construction at DESY, Hamburg. The linear accelerator part of the laser consists of 100 SRF cryomodules. Before installation in the tunnel the cryomodules undergo a series of performance tests at the AMTF Hall. Testing procedures have been implemented based on TTF (Tesla Test Facility) experience. However, the rate of testing and number of test benches is greater than in the TTF infrastructure. To maintain the goal testing rate of one module per week, improvement to the existing procedures were implemented at AMTF. Around 50% of the testing time is taken by connection of the cryomodule to the test bench, performing all necessary checks and cool down. Most of the preparation procedures have been optimized to decrease mounting time. This paper describes improvements made to the mechanical connections, vacuum checks and cryogenics operation.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text,
※ RIS/RefMan,
※ EndNote (xml)
|
|
|
TUPB117 |
Cavities and Cryomodules Managing System at AMTF |
910 |
|
- M. Wiencek, K. Krzysik, J. Świerbleski
IFJ-PAN, Kraków, Poland
- J. Chodak
DESY, Hamburg, Germany
|
|
|
800 SRF cavities and 100 SRF cryomodules are under test in the AMTF Hall at DESY, Hamburg. Testing of such a large volume of components requires a management system which can store the measurement data. In addition the system should simplify tasks which are recurrent. In the case of the system developed at AMTF, communication with external databases has also been developed. An added complication is that not all the test procedures are identical for each component, and therefore the management system keeps track of all work done for each of the individual components. In the case of the vertical acceptance tests for the 800 SRF cavities, the management system provides an interface for specifying a decision of the next step each cavity (e.g. send for module assembly or retreatment). This paper describes the most important parts of this system.
|
|
Export • |
reference for this paper to
※ BibTeX,
※ LaTeX,
※ Text,
※ RIS/RefMan,
※ EndNote (xml)
|
|
|