Paper | Title | Page |
---|---|---|
TUAA03 | BESSY VSR: A Novel Application of SRF for Synchrotron Light Sources | 462 |
|
||
CW SRF Cavities have been used very successfully in the past in synchrotron light sources to provide high power acceleration. Here we present a novel application of higher harmonic systems of two frequencies (1.5 GHz and 1.75 GHz) to generate a beating of accelerating voltage. With such a system it is possible to store "standard" (some 10 ps long) and "short" (ps and sub-ps long) pulses simultaneously in the light source. This opens up brand new possibilities for light source users to perform dynamic and high-resolution experiments at the same facility. The demands on the SRF system and RF control are substantial and a new design, based on waveguide damping, is currently being developed. This system will be used for a major upgrade of the BESSY-II facility to the BESSY Variable Pulse Storage Ring (BESSY-VSR) for a next-generation storage-ring light source. We will discuss the concept, challenges and designs for BESSY-VSR. | ||
![]() |
Slides TUAA03 [2.103 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
TUPB078 | Developments on a Cold Bead-Pull Test Stand for SRF Cavities | 770 |
|
||
Final tuning and field profile characterization of SRF cavities always takes place at room temperature. However, important questions remains as to what happens when the cavity is cooled to LHe temperature, in particular with multi cell systems. To enable the characterization of cavities in the cold, we have designed and commissioned a "cold bead-pull" test stand at HZB. The present test stand is designed to be integrated in HoBiCaT (Horizontal bi-cavity testing facility) with the ability to provide electric field profile measurements under realistic superconducting conditions (T=1.8K). In this paper mechanical and operational details of the apparatus will be described as well as future plans for the development and usage of this facility. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB026 | Update on SRF Cavity Design, Production and Testing for BERLinPro | 1127 |
|
||
Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association. The BERLinPro Energy Recovery Linac (ERL) is currently being built at Helmholtz-Zentrum Berlin in order to study the accelerator physics of operating a high current, 100 mA, 50 MeV low emittance ERL utilizing all SRF cavity technology. For this machine three different types of SRF cavities are being developed. For the injector section, consisting of an SRF photoinjector and a three two cell booster cavity module, fabrication is completed. The cavities were designed at HZB and manufactured, processed and vertically tested at Jefferson Laboratory. In this paper we will review the design and production process of the two structures and show the latest horizontal acceptance tests at HZB prior to installation into the newly designed cryo-module. For the Linac cavity the latest cavity and module design studies are being shown. |
||
![]() |
Poster THPB026 [1.535 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |