Paper | Title | Page |
---|---|---|
MOPB001 | RF Performance of Ingot Niobium Cavities of Medium-Low Purity | 61 |
|
||
Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Superconducting radio-frequency cavities made of ingot niobium with residual resistivity ratio (RRR) greater than 250 have proven to have similar or better performance than fine-grain Nb cavities of the same purity, after standard processing. The high purity requirement contributes to the high cost of the material. As superconducting accelerators operating in continuous-wave typically require cavities to operate at moderate accelerating gradients, using lower purity material could be advantageous not only to reduce cost but also to achieve higher Q0-values, because of the well-known dependence of the BCS-surface resistance on mean free path. In this contribution we present the results from cryogenic RF tests of 1.3-1.5 GHz single-cell cavities made of ingot Nb of medium (RRR=100-150) and low (RRR=60) purity from different suppliers. Cavities made of medium-purity ingots routinely achieved peak surface magnetic field values greater than 70 mT with Q0-values above 1.5·1010 at 2 K. The performance of cavities made of low-purity ingots were affected by significant pitting of the surface after chemical etching. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB026 | Update on SRF Cavity Design, Production and Testing for BERLinPro | 1127 |
|
||
Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association. The BERLinPro Energy Recovery Linac (ERL) is currently being built at Helmholtz-Zentrum Berlin in order to study the accelerator physics of operating a high current, 100 mA, 50 MeV low emittance ERL utilizing all SRF cavity technology. For this machine three different types of SRF cavities are being developed. For the injector section, consisting of an SRF photoinjector and a three two cell booster cavity module, fabrication is completed. The cavities were designed at HZB and manufactured, processed and vertically tested at Jefferson Laboratory. In this paper we will review the design and production process of the two structures and show the latest horizontal acceptance tests at HZB prior to installation into the newly designed cryo-module. For the Linac cavity the latest cavity and module design studies are being shown. |
||
![]() |
Poster THPB026 [1.535 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB055 | RF Performance Results of the 2nd ELBE SRF Gun | 1227 |
|
||
As in 2007 the first 3.5 cell superconducting radio frequency (SRF) gun was taken into operation at Helmholtz-Zentrum Dresden-Rossendorf, it turned out that the specified performance to realize an electron energy of 9.4 MeV has not been achieved. Instead, the resonator of the gun was limited by field emission to about one third of this value and the measured beam parameters remained significantly below its expectations. However, to demonstrate the full potential of this electron source for the ELBE linear accelerator, a second and slightly modified SRF gun was developed and built in collaboration with Thomas Jefferson National Accelerator Facility. We will report on commissioning of this new SRF gun and present a full set of RF performance results. Additionally, investigations are shown that try to explain a particle contamination that happened recently during our first cathode transfer. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB057 | ELBE SRF Gun II - Emittance Compensation Schemes | 1235 |
|
||
In May 2014 the first SRF photo injector at HZDR has been replaced by a new gun, featuring a new resonator and cryostat. The intention for this upgrade has been to reach for higher beam energies, bunch charges and therefore an increased average beam current, which is to be injected into the superconducting, CW ELBE accelerator, where it can be used for multiple purposes, such as THz generation or Compton backscattering. Because of the increased bunch charge of this injector compared to its predecessor, it demands upgrades of the existing and/or novel approaches to alleviate the transverse emittance growth. One of these methods is the integration of a superconducting solenoid into the cryostat. Another method, the so called RF focusing, is realized by displacing the photo cathode's tip and retracting it from the last cell of the resonator. In this case, part of the accelerating field is sacrificed for a better focus of the electron bunch right at the start of its generation. Besides particle tracking simulations, a recent study, investigating on the exact position of the cathode tip with respect to the cell's back plane after tuning and cool down, has been performed. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |