Comparison of linacs for small-scale inverse Compton scattering light source applications

F. He^{*#}, F. Hannon^{*}, J. Mammosser^{*}, R. A. Rimmer^{*}, H. Wang^{*} *Jefferson Lab, Newport News, VA 23606, USA **#Peking University, Beijing, China**

Motivation

MOP019

Great interest has been generated by the possibility of compact, high brilliance X-ray source based on inverse Compton scattering (ICS) since the rapid advancement in laser and accelerator technologies. MIT proposed such an affordable concept to produce 20keV X-ray, but the linac for electron acceleration after injector was not well defined then [1]. JLab has been founded by BES to demonstrate the SRF technology for this application, and various options are investigated

Requirement to the linac		Laser	Invers	e Compton	30 1/1/
Beam current	1 mA	= RF amp	scatte	ering	beam dump
Repetition rate	100 MHz CW		Bunch		
FWHM length	1.1 ps		×.		

Options on the linac

 Normal conducting (NC) vs. Superconducting (SC) Re-entrant shape in low frequency is typical for NC CW machine; Elliptical SC cavities is commonly preferred for CW operation.

2. 4K vs. 2K for SC linac

- The cavity performance improves a lot from 4K to 2K;
- Though, cryogenic efficiency and capital cost are way different, too.
- 3. Elliptical vs. spoke shape
 - Elliptical cavity is typically used for $\beta=1$ applications;
- Spoke cavity at high beta is being studied recent years, too.
- Various frequency and number of cells
- BCS resistance and R/Q are sensitive to this two variables

What if Nb3Sn works 5.

Could it be a game changer?

Comparison

Why superconducting?

- SC linac is ~3.6 m long, while NC linac is ~10 m at wall loss of 50kW/cavity
- RF source for NC linac dominates the cost for 17 MV voltage gain in CW mode

• Why 400 MHz?

- **Key point:** on the harmonic of 200MHz injector gun
- 2K operation at higher frequency costs more in small scale cryo-system

Why elliptical cavity?

- The spoke and elliptical cavities at 352MHz were compared
- Optimized spoke and elliptical cavities have similar dynamic heat load
- Elliptical cavity is preferred in emittance and peak surface field, meanwhile it is easier to fabricate and clean.
- Spoke cavity is better in frequency stability and smaller in size

	Double spoke	Elliptical
Frequency [MHz]	352.2	352.2
Cavity inner diameter [mm]	578	719.9
Aperture diameter[mm]	50	170
Ep/Ea	4.3	2.5
Bp/Ea [mT/(MV/m)]	7.6	3.3
Geometry factor [Ω]	179	289
Ra/Q [Ω]	781	488
$Ra^*Rs (=G^*Ra/O) [O^2]$	1.40 x 10 ⁵	1.41 x 10 ⁵

One more word on why 4K

- **Capital cost of the cryo-plant dominates**, and 4K at lower frequency (<500MHz) is much favorable.
- Operation of 4K small-scale (i.e. 100-500W) commercial cryo-plant is way more stable than those at 2K

• If Nb₃Sn works...

- Assume 30 nΩ below 10 MV/m is achievable at 4K for TESLA 9cell cavity (Q0~1e10)
- Cryo-plant and electric bill will be half the current choice, which yields about 30% less cost of the whole linac. And it will be much more mature to handle the 1.3GHz size.

Assumptions

Peking University

- Cavity shapes are all optimized to reduce dynamic heat load, and max gradient is limited by either Ep, Bp or dynamic heat load
- Capital cost includes cavity, cryomodule, cryo-plant(if any) and RF power source. Real-estate is NOT counted. Labor for operation is NOT included
- Detailed assumptions are available in [2]

Conclusion

- Various linac designs were compared for the application to the proposal of an ICS X-ray light source
- 4K linac consists of two 400MHz 3-cell elliptical cavities are chosen
- Detailed design of the 3-cell cavity could be found in [3]

Reference :

- W. Graves, et al. "MIT Inverse Compton Source Concept.", NIM.A 608, no. 1, Supplement (2009): 103-105
- [2] F. He, et al. "Linac comparison for the ICS Application", JLAB-TN-12-029, 2012
- F. He, et al. "A prototype cavity for inverse compton scattering light source applications", THP014, [3] this conference.

ACKNOWLEDGEMENT:

This research was conducted at Thomas Jefferson National Accelerator Facility for the Department of Energy under grants DE-AC05-06OR23177

Contact: feisi@jlab.org