Development and Performance of Spoke Resonators for Project X

Leonardo Ristori

on behalf of the Fermilab SRF Development Group

* Attention, this is a model, we did not cut a real cavity

Outline

- Spoke Cryomodules in Project X
- SSR1-SSR2 Cavity Design
- Cavity Fabrication
- Processing
- VTS Qualification
- Jacketing
- Tuner

The first production SSR1

The first jacketed SSR1

SSR1 Cryomodules

SSR2 cryomodules

SSR1 and SSR2

	SSR1	SSR2
β	0.222	0.515
E _p /E _{acc}	3.84	3.53
B _p /E _{acc}	5.81 mT/(MV/m)	6.25 mT/(MV/m)
Aperture	30 mm	50 mm
Diameter	492 mm	560.8 mm
L_{EFF} ($\beta\lambda$)	205 mm	475 mm
G	84 Ω	118 Ω
R/Q	242 Ω	275 Ω
Oper. Gradient	12 MV/m	11.2 MV/m
Q_0 at E_{acc}	> 0.5 10 ¹⁰	> 1.2 10 ¹⁰
Operating B _{MAX}	70 mT	70 mT
Operating E _{MAX}	46 MV/m	40 MV/m
Tuning constant	40 N/kHz	90 N/kHz
Sensitivity	< 25 Hz/torr	< 25 Hz/torr
P (RT, CT)	2 bar, 4 bar	2 bar, 4 bar

SSR1 and SSR2 – a closer look..

L. Ristori – SRF13, Paris 23-27 September 2013

Pressure Safety

- We designed spoke resonators to reach 2 bar (RT) and 4 bar (CT) meeting applicable US safety codes, ASME, B&PV, for complex shapes <u>extensive FEA necessary</u>
- <u>Von Mises stresses may appear higher than yield in certain locations (see image), don't be scared</u>, depending on the specific case, it may be OK!

It is possible to reduce sensitivity without increasing rigidity Bare cavity, free interfaces, df/dp ~ 600 Hz/torr (sim & meas) Jacketed cavity, free interfaces df/dp ~ 0 Hz/torr (sim), ~ 10 Hz/torr (meas) Ease of tuning 39 N/kHz (bare), 40 N/kHz (jacketed)

- Deformations with 1 atm pressure: 90 microns on cavity
- Beam pipes are free, but move only few microns
- Bellows diameter optimized

Deformations in high E and B regions balance out resulting in a small frequency shift (Slater's Theorem)

From ConFlats to Aluminum Seals

Sealing unreliable/non-repeatable

- 100% leak tight during incoming QC using regular Agcoated screws
- Success rate 75% per flange (~ 30%) using clean Si-Bronze screws
- Machining/damaging
 - Inaccurate machining of sealing surfaces, high roughness (see photo)
 - Flanges are machined and welded to cavity in early stages of fabrication, prone to damaging (see photo)
- Generators of Cu-particulates
 - Sharp (and rough) knife edge able to detach copper particulates from gasket when disassembled, <u>unacceptable</u> for SRF applications
- Switch to DESY-Tesla Aluminum Seals
 - flanges of existing cavities will be reworked, conflats will not be used anymore in SRF applications, custommachining of conflats will be avoided in all applications

Magnification of a copper gasket after disassembly. The imprint left by the knife edge shows rough machining grooves.

Magnification of a knife edge showing extensive damage

Brazed transition rings

Two different joint designs investigated

Adjusting Frequency

- Frequency is adjusted by trimming the outer conductor incrementally, before final equator welds.
- Ideal cavity will hit target frequency and gap size

Operation	Shift (kHz)	Freq. (MHz)
End-wall Welding	Negligible	323.975
BCP (120-150 µm)	+ 160	324.135
BCP (20-30 μm)	+ 40	324.175
Ring + Jacketing	+ 500	324.675
BCP (20-30 µm)	+ 40	324.715
Cool-down	+ 385	325.100
Tuner Engaged	- 100	325.000

Adjusting frequency and gap size independently

- <u>Frequency</u> AND <u>gap size</u> can be achieved by using wisely the plastic tuning process.
- Trimming should be interrupted at the crossing of the "halt trimming" line, not at a fixed frequency

kHz/mm	measured (avg)
trimming	345 (320-370)
plastic tune	465
elastic tune	585

Processing/Testing steps (ANL, FNAL)

1. Inspection – RF & Optical
2. BCP 120-150 µm (flip half-way)
3. HPR
4. 600 °C, 10 h (< 5°C/min ramp rate
5. RF Tuning
6. BCP 20-30 μm
7. HPR (horiz + vert)
8. Assemble
9. Evacuate + 120 °C, 48 h
10. Vertical Test
11. Helium Vessel Dressing
12. HPR
13. BCP 20-30 µm
14. HPR
13. Assemble
14 Evente 1 100 °C 10 h

- 14. Evacuate + 120 °C, 48 h
- 15. Horizontal Test
- 16. Ready for String

Low-Temp Ovens (<300°C)

VTS Qualification

VTS Qualification – cont.

		B _{pk} , mT
Cavity	$E_{MAX} - Q_0$ at 12 MV/m	Status
S105	$19.5 \text{ MV/m} - 0.8 \ 10^{10}$	Qualified at 2 nd pass
S107	$21.7 \text{ MV/m} - 0.8 \ 10^{10}$	Qualified at 1 st pass
S109	$19.6 \text{ MV/m} - 0.98 \ 10^{10}$	Qualified at 1 st pass
S108	$21.3 \text{ MV/m} - 1.2 \ 10^{10}$	Qualified at 2 nd pass
S113	$18.5 \text{ MV/m} - 1.0 \ 10^{10}$	Qualified at 1 st pass
S110	$17.3 \text{ MV/m} - 0.77 \ 10^{10}$	Qualified at 2 nd pass
S112	$17^* \text{ MV/m} - 1.2 \ 10^{10}$	Qualified conditionally

- 10 cavities received
- 7 cavities qualified
- 3 more to test

Multipacting Processing vs. 120C Bake

Fermilab

Sensitivity of Bare Cavity

Jacketing – Shifts and Sensitivity

First Jacketed Tests

Measured df/dP in warm conditions: +10 Hz/torr (free) +4 Hz/torr (with dummy tuner) Requirement is < 25 Hz/torr

The double-lever tuner

Coarse Range	135 kHz (0.25 mm)
Motor F _{MAX}	1250 N (1:6)
Fine Range	1 kHz (2 μm)

Summary and Outlook

- 10 Production SSR1 received (8 needed for 1st CM)
- EBW holes repaired, process improved
- Decision to modify flanges from ConFlat to Aluminum Seal
- 7 Cavities qualified for PXIE SSR1 Cryomodule
- First repaired cavity exceeded requirements
- First Jacketed cavity received, sensitivity meets requirements
- Cold tests of Jacketed cavity: end of 2013
- 2014 devoted to Testing remaining cavities, manufacturing tuner prototype, jacketing more cavities

