Limits in cavity performance

Detlef Reschke

DESY

Tutorial, SRF 2007

- Introduction
- SCRF Basics (=> Tutorial 1b: Basic principles of RF Superconductivity, J. Knobloch)
- Limitations and anomalous loss mechanisms:
 - Quench (thermal local instability)
 - Q-drop (without field emission) + Q-slope (at medium field)
 - Field emission
 - Multipacting
 - Hydrogen Q-disease
 - Increased residual resistance

Detlef Reschke

Introduction

2

• Outline:

- physics of limitation
- "tell-tales" and symptoms (rf, x-rays, T-maps, ...)
- cures
- open questions

Detlef Reschke

3

2007-10-12

SCRF basics: Critical magnetic rf field

• RF field penetrates for less than 10⁻⁹ s

=> Delayed penetration in the fluxons (superheating) in case of no

	Experimental data [mT]	Calcula	ted field [mT]	$E_{acc} [MV/m]$	
Property	at $4.2 \mathrm{K}$	at $0 \mathrm{K}$	at $2 \mathrm{K}$	at $2 \ \mathrm{K}$	
B_{c1}	130	164	156	37	What is really
B_c	158	200	190	45	the fundamental
B_{sh}	190	240	230	54	limit for RF
B_{c2}	248	312	297	62	cavities?

K. Saito, 2001: H_c^{rf} is 180 mT at <2K ! => end of discussion ???

- Experimental:
 - (180-190) mT typically achieved in single-cell cavities,
 but 209 mT at Cornell recently ! => new discussion necessary !!!
 - ~ 170 mT achieved in nine-cell cavities

Detlef Reschke

2007-10-12

"Quench"

"Quench"

- Localised effect \Rightarrow surface defect has higher R_s
- T of part (or all) of surface exceeds $\rm T_{c},$ dissipating all stored energy.
- Quench: surrounding material cannot transport the increased thermal load to the helium

=> high purity Nb with high thermal conductivity

=> small + few defects

Detlef Reschke

"Quench": Mechanism

Temperature difference between inner surface and helium bath temperature (two dimensional case):

- The RF current produces heat
- Superconductors are bad thermal conductors:
 - Thermal conductivity
 - Kapitza Nb/He interface resistance
- A small normalconducting defect can produce a very large heating (Factor 10⁶ surface resistance!)

High thermal and Kapitza conductivity required !!

"Quench": Thermal Conductivity

• Thermal conductivity: From "reactor grade" RRR = 40 to high purity RRR = 500

"Quench": Thermal Conductivity and Defects

• Simplification of the differential equation gives for the quench field:

$$H_{q} = \sqrt{(4 \cdot \lambda \cdot (T_{c} - T_{bath}) / r_{def} \cdot R_{s,def})}$$

- with: averaged thermal conductivity λ
 - r_{def} << d (thickness of Nb)
 - no Kapitza conductivity
 - no $\rm R_{BCS}$ and $\rm R_{res}$
 - $\rm T_{c}$ independent of $\rm H_{rf}$

=> Defects (e.g. foreign material inclusions) have to be very small (Factor 10⁻⁶)

=> thermal conductivity of niobium has to be high

- pure Nb material free of "defects"

e.g. for
$$r_{def} = 50 \ \mu m$$
, $R_{s,def} = 10 \ m\Omega$, $\lambda = 75 \ W/mK$ => $H_q = 820 \ Oe$

Detlef Reschke

"Quench": Numerical thermal model calculations

Remark: H_q with nearly no dependence of T_B in superfluid Helium !

Detlef Reschke

2007-10-12

- "Quench": Thermal Conductivity and RRR
- Thermal and electrical conductivity are linked
- RRR (residual resistivity ratio):

$$\approx 4 \cdot \lambda_{thermal}(4.2K)$$

as good rule of thumb

- RRR is given by amount of metallic (e.g. Ta) and gaseous (e.g. H, N, O) impurities
- Furthermore avoid all other impurities and defects from manufacturing
 => careful check of fabrication process
 - => quality control by eddy current scanning technique

"Quench": Examples of cavities with material defects

DÈŚY

"Quench": Example of a material defect

"Quench": Eddy current scanning

Detlef Reschke

Large tantalum inclusions (~200 μ m) and places with irregular patterns from surface preparation (grinding)

"Quench": Nature of defects

Attention!!

- avoid defects:
 - eddy-current scanning is sensitive to $(100 200 \mu m)$ defects => good for app. 20MV/m
- nature of defects often unclear!!
 - How to find a < 50 μ m defect on several cm² surface ??
 - identified:

foreign metal inclusions, delaminated regions, irregularities with sharp edges, pores, welding mistakes, ...

- chemical residues
- grain boundaries

Figure 29. Expanded optical micrographs of grain boundaries in the welded regions. The typical grain size is 1 mm. (a) Electropolished to remove 100 μ m, (b) after standard chemical polishing to remove 44 μ m. Note that in (a) electropolishing still leaves a grain boundary step, although it is not as high, nor as sharp, as the step that results from standard chemical etching [23].

Detlef Reschke

"Quench": Post-purification

- Post-purification by solid-state gettering
- use Ti (or Y) as getter material => higher affinity for O, (N, C) than Nb
 - coating of cups or cavity with getter material at 1350 C (Ti) under UHV
 - diffusion of O from Nb to Ti until equilibrium
- 1) Increase of RRR = 250-300 to RRR = 500 700
 2) Homogenizing impurities
- Disadvantage 1: getter material needs to be etched/polished off
 - inside: up to 100µm diffusion of getter material along grain boundaries
 outside: app. 50 µm removal to establish good heat transfer (Kapitza resistance)?
- Disadvantage 2: cavity becomes soft

"Quench": Postpurified TTF cavities DESY 1,00E+11 1,00E+10 ð 1,00E+09 ◆ AC56 ◆ AC57 ■ AC59 ▲ AC60 AC61 AC63 AC64 1,00E+08 10,00 15,00 20,00 25,00 30,00 35,00 0.00 5,00 40,00

E_{acc} [MV/m]

Detlef Reschke

19

2007-10-12

"Quench": Cavity shape

• Increased gradient E_{acc} for same H_p with modified cell shape:

- TESLA shape: Lower E_s + tilted iris area, but higher H_p/E_{acc} (~15%)
 => good wet cleaning, optimized for FE, stronger cell-to-cell coupling
- Low Loss : Lower H_p/E_{acc} , but reduced iris diameter + higher E_p/E_{acc}
- Reentrant : Compromise for rf parameters, but difficult cleaning

(courtesy of J. Sekutowicz)

2007-10-12

"Quench": Tell tales and symptoms

- breakdown of transmitted power within ≈ms (thermal time constant)
- often self-pulsing

- T-Mapping:
 - hot spot in surface area with high magnetic field
 - high ΔT during quench
 - precursor just below the quench ??

• No X-rays !!!

=> with x-rays life becomes more complicated (quench with FE present, FE induced quench, multipacting, ...)

"Quench": Open questions

- Is there a **superiority** of large grain /single crystal Nb for H_q ??
 - reduced effect of grain boundaries
 - smooth surface on large grains without EP
 - dependence on preparation ?
 - => answer here at this workshop ???

Figure 29. Expanded optical micrographs of grain boundaries in the welded regions. The typical grain size is 1 mm. (a) Electropolished to remove 100 μ m, (b) after standard chemical polishing to remove 44 μ m. Note that in (a) electropolishing still leaves a grain boundary step, although it is not as high, nor as sharp, as the step that results from standard chemical etching [23].

- Why gives EP higher quench fields?
 => discussion above !!!
- Complete modeling of quench properties and comparison to measurements e.g. Kapitza resistance; often missing precursor in T-maps; (medium field Qslope); ...
- Fundamental maximum magnetic field => H_{c1} , H_c , H_{sh} ???

"Q-drop" without field emission

- My problem or the solution?
 - Excellent summaries given by
 - G. Ciovati, 12th Workshop on RF Superconductivity, Cornell, 2005
 - B. Visentin, International Workshop on Thin Films, Legnaro, 2006
 - V. Palmieri, 12th Workshop on RF Superconductivity, Cornell, 2005

Different situation for

 thin films
 bulk Nb

Thin Film Cavities & Q-Drop

dapnia

saclay

Advantages to use Thin Film Technology for SRF Cavities : Reduced Cost - New Superconducting Material (higher $T_c \& H_{sh}$)

severe Q-drop limits High Gradient Performances E_{acc} < 25 MV/m

(no field emission, no quench only RF power limitation)

Q-Drop Origin (Thin Film)

dapnia	Granular Superconductor Theory : in weak links (ensity bounds)	Tosephson fluxon penetration		
	 Thermal resistance at superconduct 	$ries \rightarrow 0xidized sputter island)$ tor-substrate interface		
saclay	 Energy Gap dependence ∆(H) 	V. Palmieri - SRF <u>(</u> 2005)		
J. Halbritter - Workshop of the Eloisatron Project (1999)		B. Bonin - Supercond. Sci. Technol. <u>4</u> ,257 <u>(</u> 1991)		
	 Not a fundamental limitation : implication 	prove cleanness during process		

V. Arbet - Engels et al.- NIMA (2001)

(substrate, sputtering,...)

not enough data on Thin Film Cavities

Hope to clear up the Thin Film issue ???

• For bulk Nb cavities:

Preparation dependence: BCP

• G. Giovati:

BCP treated cavities (1)

• Fine grain (~ $50\mu m$), rough surface (5-10 μm)

R.L. Geng et al.-SRF 99-TUP021

Q-drop STILL PRESENT after baking

Preparation dependence: Contradiction for BCP !

• B. Visentin: Contradiction !!!

It can be cured by baking : limitations in $Q_{\rm 0}$ and $E_{\rm acc}$ can be exceeded

Check of world wide data base necessary !!! (More data available: TTF??)

Detlef Reschke

2007-10-12

• G. Giovati:

BCP treated cavities (2)

 Larger grains (1-5mm) by post-purification, rough surface (5-10μm)

Q-drop RECOVERS after baking

Preparation dependence: BCP + large grain

• Q-drop recovers for BCP treated large grain + single crystal cavities !!

Preparation dependence: BCP + Air bake DESY BCP treated cavities (3) • G. Giovati: "Air" baking 1.0E+11 "Larger" grain (post-purif.) Q_a "Fine" grain ര് 1.0E+10 non "in-situ" baking 1E+10 C1-10 O1 (BCP) Quench C1-10 S1 (BCP + baking @ Atm. Press. 1.0E+09 1E+09 0 2 4 8 10 12 14 16 18 20 22 24 26 28 30 ß 20 30 Eace (MV/m) E_{aoo} [MV/m] 1.3 GHz Single Cell (Saclay) 1.5 GHz CEBAF Single Cell (JLab) B. Visentin et al.-SRF 03-MOP19 G. Ciovati, unpublished

- Reduced Q-drop improvement
- Higher residual resistance

Preparation dependence: EP

Q-drop recovers for all EP treated Nb bulk cavities !!
 => fine / large grain; 800 C / 1400 C annealing

Preparation dependence: Summary

- Q-drop is common to BCP, EP, fine + large grain Nb, single crystal Nb
- The onset of Q-drop is higher for lower density of grain boundaries:

Contradiction on effect of bake for fine grain Nb!!

O-drop onset field range (mT)

- Bake cures Q-drop on all EP-treated and LG + SC BCP cavities
 => effect of grain boundary density??
- "Air" baking less effective than "UHV" bake

What is "bake"??

- Standard recipe:
 - for 1 2 days UHV- conditions T = 110 - 125 C
 - => fully assembled cavity after cleanroom treatment
- Alternatives:
 - i) higher temperature

T = 135 - 150 C for 3 - 12 h still UHV-conditions

=> still fully assembled cavity required

ii) open bake at air (Saclay) or nitrogen (DESY) open bake in air:

T = 110 Cfor < 60h (3h)

- => open air / nitrogen baking well adapted to cavity mass production
- => more experiments necessary !!

Detlef Reschke

Temperature maps before bake

Wide distributed loss areas or "hot spots" ?
A) Fine grain:

=> Fine grain shows widely distributed (homogeneous ??) losses in the equator region

=> effect of magnetic (not electric) field

(confirmed by separate TE_{011} – cavity experiments)

Temperature maps before bake II

- => Many experiments show "hot spots", but there are exceptions:
- => no correlation with grain boundaries
 => magnetic field effect

Q-drop: Effect of anodization

• Contradictory results for anodization (=increase the thickness of oxide):

Hot spots (large grain cavity)

Reduced after baking

Q-slope restored by 40 V anodization

D. Reschke: **Fine grain EP** single cell => no Q-slope after 30V anodization

Q-drop: other experimental observations

- Benefit of bake is maintained
 - after long air exposure (several years)
 - high pressure water rinsing
- Oxipolishing (> 60nm) is required to restart Q-drop (=> contradiction to Cornell experiments??)
- BCS surface resistance decreases after bake => reduction of mean free path
 G. Giovati:

Q-drop: Sample experiments

- Surface analysis by SIMS, XPS etc.
 - natural oxide Nb₂O₅ decomposes into sub-oxides (NbO, NbO₂)
 - + thinner Nb₂O₅ layer
 - diffusion of oxygen in the rf penetration depth (=> modification of R_{BCS})
- Magneto-optical measurements:
 - evidence of flux penetration along grain boundaries

2007-10-12

High Field Q-Drop (6 theories)

dapnia

- ceci saclay
- Diffusion (O, Imp.) :
- " Interface Tunnel Exchange
- "Bad Superconducting Layer"
- "Granular Superconductivity"
- Surface Roughness : "Magnetic Field Enhancement"
- High Field (T, H_{peak}) : "Thermal Feedback"
 - " Energy Gap Dependence Δ (H)

Theories / Experiments Confrontation

B. Visentin - SRF (2003) – updated at Argonne Workshop (2004)

saclay	$\overline{\ }$	Q-Slope Fit	Q-Slope before baking (EP = BCP)	Q-Slope Improvem ^t after baking	Q-Slope after baking (EP < BCP)	No change after 4 y. air exposure	Exceptional Results (BCP)	Q-Slope unchanged after HF chemistry	TE ₀₁₁ Q-slope after baking	Quench EP > BCP	BCP Quench unchanged after baking	Argum ^t Validity	Fund ^{al} Disagreem ^t Exper.≠ Theory
	Magnetic Field Enhancem ^t	Y simulat. code	B _m ≠ B _{C2} ^S ≠	$\mathop{\mathbf{Y}}_{{}^{\mathbf{B}_{C2}s}\uparrow}$	\mathbf{Y} lower β_m	-	$\mathbf{N}_{high \ \beta_m}$	-	-	Y lower βm	N Bc₂ ^s ↑	Y	D ₁
	Interface Tunnel Exchange	$\mathbf{Y}_{E^{s}}$	Ν β∗≠	Y Nb2O5-y↓	Y lower β*	№ Nb2O5-y ↑	\mathbf{N} high $\beta *$	new Nb ₂ O _{5-y}	mprov ^t	-	-	Y	D ₂
	Thermal Feedback	Y parabolic	Y ≅ thermal properties	Y _{RBCS} ↓ R _{res} ↑	N ≅ therm. propties	-	-	-	-	-	-	$\mathbf{N}_{\text{C coeff.}^{t}}$	-
	Magnetic Field Dependence of ∆	$\mathbf{Y}_{_{expon^{tial}}}$	N Bc2 ^s ≠	Y _{Bc2} s↑	$\mathop{\mathbf{Y}}_{\stackrel{higher}{B_{C2}}s}$	-	-	-	-	-	-	thin film	D ₁
	Segregation of Impurities	?	N segregation ≠	N only O diffusion	Y surface ≠	-	Y good cleaning	N chemistry	-	-	-	Y	-
	Bad S.C. Layer Interstitial Oxygen Nb ₄₋₆ O	?	Y NC layer	Y O diffusion	N	N interstitial re-appears	-	new bad layer	-	$\mathop{Y}_{\stackrel{higher}{B_{C2}}}$	N Bc₂↓	Y	\mathbf{D}_1

 \mathbf{Y} / \mathbf{N} = theory in **agreement** / **contradiction** with experimental observation \mathbf{N} + / = undisputable disagreement with experiment

- Q-drop is driven by magnetic surface field
- Bake cures Q-drop for all EP-treated cavities
- Bake cures Q-drop for Large-grain + single-crystal BCP-treated cavities but inconsistent results for fine grain BCP-treated cavities
- => Density of grain boundaries:

Dependence of onset field of Q-drop and effect of baking ?

• Baking increases the oxygen concentration within the rf penetration depth

Q-drop: Open questions

- Role of oxygen ??
- Is there any role of hydrogen?
- Experimental check of flux penetration in cavities?
- Is there one consistent model for the explanation of Q-drop and the effect of baking in bulk Nb ?
 => this workshop ???

"Medium field" Q-slope

- Experimental:
 - Nearly (!) all bulk Nb cavities show a Q-slope (factor 2 5 Q-reduction to low field)
 - linear / quadratic field dependence (depending on Lab and cavity)
 - Q-slope is present after EP & BCP & bake & no-bake
- Consequence:
 - no hard limit (\bigcirc)
 - **BUT:** Cryogenic load increases => increased cost or limited operational acceleration gradient

"Medium field" Q-slope: Models

- linear dependence by hysteretic losses due to Josephson fluxons in weak links (=> grain boundaries)
 => check on single-crystal cavities necessary
- Quadratic dependence:

i) Halbritter model (SRF 2001)

ii) Thermal feedback model:

i) intrinsic heating of $R_{BCS} + R_{res}$ not sufficient for "standard" parameters for thermal conductivity and Kapitza conductance (ok with reduced Kapitza)

ii) non linear correction for rf pair breaking by A. Gurevich

- better fit of experimental data (P. Bauer, SRF 2005)

=> new results at this workshop ??

Field emission

Field emission:

46

Field emission: Introduction

 Major limitation of the last years in multi-cell cavities, especially in beam operation:

Field Emission!!

- Typical (good) onset of field emission at 1.3 GHz
 - single-cell cavities:
 - multi-cell cavities (vertical + horizontal):
- But:

• 35 MV/m without field emission in e⁻ - beam operation is possible !!

Field emission: Instruments

• Some tools developed for field emission investigation

Schrittmotoren und Piezotranslatoren Probentransport

Detlef Reschke

Field emission: Experimental observations

- Metallic (conducting) particles of irregular shape; typical size: 0,5 20 μm
- Only 5% 10% of the particles emit

Detlef Reschke

Field emission: Experimental observations

- Metallic (conducting) particles of irregular shape; typical size: 0,5 20 μm
- Only 5% 10% of the particles emit
- hydrocarbon contamination of the vacuum system
- Modified Fowler-Nordheim's law :

$$I \propto A_{FN} \cdot (\beta_{FN}E)^2 / \Phi \cdot exp (- \frac{C \Phi^{3/2}}{\beta_{FN}E})$$

• typical β -values between 50 and 500 for srf cavities

Field emission: Experimental observations

- Metallic (conducting) particles of irregular shape; typical size: 0,5 20 μm
- Only 5% 10% of the particles emit
- hydrocarbon contamination of the vacuum system
- Modified Fowler-Nordheim's law :

$$I \propto A_{FN} \cdot (\beta_{FN}E)^2 / \Phi \cdot exp (- \frac{C \Phi^{3/2}}{\beta_{FN}E})$$

- typical β -values between 50 and 500 for srf cavities
- A_{FN} (FN emission area) not directly correlated to physical size of emitter
- No substantial difference in rf and dc behaviour

Field emission: model

- Protrusion-on-protrusion model explains the experimental observations
- Modifications of A_{FN} and β by adsorbed gases and oxide layers
- Activation of emitters between 200C and 800C by modification of the boundary layer
 - \rightarrow influence of 120C bake-out ??
 - => Poster of A. Dangwal et al.

Figure 12. Calculated equipotentials for two superposed hemispherically capped cylindrical projections.

Detlef Reschke

55

Present picture of field emission

- Quality of final cleaning & dustfree assembly is crucial for field emission free cavities
 - \rightarrow perfect cleaning of cavity + all auxiliaries
 - \rightarrow dustfree assembly
 - \rightarrow pumping & venting without recontamination (particles, hydrocarbons)
 - \rightarrow documentation
- No intrinsic limitation of Nb in a well-fabricated and well-prepared cavity
- surface conditions are poorly known compared to semi-conductor's:
 - No investigations of the sensitive inner cavity surface possible !
 - samples \rightarrow very valuable, but bad statistics
 - cutting of cavities \rightarrow continue Cornell experiments
 - imprint technique (CEA Saclay) \rightarrow surface morphology
- no review of contamination and cleaning mechanisms see P. Kneisel, B. Lewis, SRF workshop 1995

Detlef Reschke

Open questions and "to do's"

- Personal view of open questions and "to do"-list:
 - check of particles and water quality of HPR supply water
 - practical approach needed, how to judge about the quality of final cleaning
 - (e.g.: Is particle counting of drain water useful?
 - New clever ideas for sample experiments?)
 - simplify procedure and components with respect to cleanroom work
 - cavity cleaning option before module assembly necessary ?
 - optimal surface treatment with respect to field emission (BCP vs. EP; Which acid mixture?; HPR parameters => comparison of P. Michelato; control of cleanroom assembly procedures; ...)
 - influence of "120C bake-out" on field emission?? (experiments at Wuppertal University
- More ???

Detlef Reschke

Chances of improvements ??

- Improvements of present procedures
 - hot water rinsing after chemistry ?? => (better solubility, better drying)
 - improved high pressure rinsing systems (=> P. Michelato) (no moving parts inside cavity; defined + well-known power of jet, higher pressure; different jet shape; rinsing of longer units possible?)
 - drying + venting procedures? (=> Poster of K. Zapfe et al.)
 - welding of flanges

(connecting cavities to a "super-structure"; e⁻ beam or Laser welding)

- ????

Alternative Cleaning Approaches

- Megasonic Rinsing (K. Saito et al.??)
 - effective cleaning of sub-micron particles
 - development necessary:
 - better transmission of power \Rightarrow (small) oscillator inside cavity transportation of particles \Rightarrow high flow rate
- Dry-Ice Cleaning
 - effective cleaning of sub-micron particles and film contamination
 - horizontal cleaning option
- Others:

Laser, Plasma, UV light, hot steam etc. \Rightarrow no activities ??!

Field emission: Tell tales and symptoms

60

- Exponential X-ray increase according to Fowler Nordheim's law
- +Q(E)-curve:

Typical decrease of Q-value

Field emission: Tell tales and symptoms II

- field emission loaded
- > 90% of electron energy transferred
- Electron probes: measurement of dc current at rf probes
- Higher order modes excitated by field emission
- X-ray mapping: mapping system with x-ray sensitive sensors (e.g. photo diodes
- X-ray spectroscopy: Bremsstrahlung spectrum gives highest energy of e-
- X-ray films

Field emission removal: processing

- Processing of emitters ("conditioning") possible

 i) rf and helium proc. with moderate rf power and cw-like operation
 ii) high peak power processing with high rf power and short pulses
- Helium processing: i) modification of the adsorbed gases (≈ seconds)
 ii) explosive destruction (≈ subseconds; rare)
- High peak power processing (HPP): local melting leads to formation of a plasma and finally to the explosion of the emitter (model by J. Knobloch)
 → "star bursts" (Lichtenberg figures) caused by the plasma

Processing in multicell cavities

- HPP on 5- and 9-cell structures in vertical tests: improvement from (10-15) MV/m to (20-28) MV/m, but often reduced Q-value
- Typically E_{acc} (pulsed) $\approx 2x E_{acc}$ (processed)

Detlef Reschke

 Processing of module 2 in linac successful (Feb 1999) (operation limited by power coupler above 19 MV/m)

Detlef Reschke

Processing at high gradients ?

- HPP for gradients above 30 MV/m in 1.3GHz nine-cell structures?
- \rightarrow No experience?!
- \rightarrow Very high power necessary (coupler performance)

	pulse length [µsec]							
Eacc [MV/m]	200	400	500					
40	2,45 MW	0,79 MW	0,57 MW					
60	5,5 MW	1,77 MW	1,28 MW					
80	9,77 MW	3,15 MW	2,28 MW					
for $Q_L = 3 \cdot 10^6$ (by	y D. Kostin, DESY)						

Field emission: Summary

- Precent picture of field emission not complete, but well substantiated
- Standard cleaning and assembly procedures allow high quality cavity performance, but:
 Field emission (= dark current) is still the main limitation, if usable gradients above 20 MV/m in multi-cell accelerator cavities are required
- Further improvements of standard techniques, quality control and development of alternative approaches necessary!
- Processing is only a repair tool for accelerator application

Multipacting

• Multiple impact of electrons:

Multipacting: overview

- 'Multiple Impact' of electrons
- Electrons
 - are omnipresent in cavities (from field emitters for example)
 - are accelerated in the RF field
 - hit the surface
 - can produce more electrons
 - (depending on the secondary electron emission coefficient)
- Resonance condition depends on frequency, rf-phase, cavity geometry, surface conditions (adsorbed gases => water !!),
- If in resonance (same place, same RF field phase), they produce an avalanche
 - => breakdown of rf-field (like a quench !!!)
 - => MP is sometimes processable (depending on type and order)

S-Band TM010 Resonator Stanford, late 1960-ies

this is the standard geometry for about 15 years; unfortunately the cylindrical geometry is favourable for electron multipacting

X-ray mapping

Simulated electron trajectories

DES

Avoid Multipacting by spherical cavity shape

S-band TM010 Resonator Stanford the standard geometry until about 1980

C-band Structure Genoa, about 1980 the first spherical geometry realized because of easier manufacturing

about 3 MV/m

8 MV/m !!!

calculated in thesis of U. Klein

Detlef Reschke

2007-10-12

70

Multipacting in pill box cavities

In a cavity with a nearly pillbox-like shape, electrons can multiply in the region shown (one-surface multipacting)

When the cavity shape is rounded, the electrons drift to the zero-field region at the equator. Here the electric field is so low that the secondary cannot gain enough energy to regenerate (only two-point MP possible)

Pictures taken from: H. Padamsee, Supercond. Sci. Technol., 14 (2001), 28 –51

2007-10-12

Multipacting: Tell tales and symptoms

• rf-signal of transmitted power:

- no increase of P_{trans} for enhanced forward power (left); jump in P_{trans} for partially processed MP (right)

- often breakdowns of rf field (like quench) during processing
- X-ray detectors and electron pickups are also showing activity (in the moment of breakdown!!!)
- Processing takes seconds to hours (one-surface MP nearly no processing; two-surface MP good processing)
- Re-processing after warm-up to room temperature necessary
- Higher order modes excitated

Multipacting: Temperature mapping

• Heating moves along the equator

Detlef Reschke

Hydrogen Q-disease

- History
 - first detected at HERA- and S-Dalinac cavities beginning of 1990's
 - systematic investigations in different Labs (Saclay, Wuppertal, DESY,...)
- Experimental
 - dramatic reduction of Q_0 and field after slow cooldown or parking at
 - ~ (70 170) K for hours ("100K-effect")
 - after fast cooldown no Q-disease
 - only in cavities of high RRR Nb
 - sensitive to BCP / EP conditions
 - grinding / cutting in presence of water causes Q-disease

- Fig. 3: Measured Q vs E_{acc} curves for different cooldown conditions lst: continuus cooldown from 300 K to 4.2 K in 24 h 2nd (3rd, 4th, 5th): stop during cooldown at 180 K (150 K, 100 K, 150 K) for 20 h; afterwards fast cooldown to 4.2 K in about 1.5 h (1.8 h, 1.5 h, 1.3 h)
- annealing at > 600C in UHV cures Q-disease

Detlef Reschke

2007-10-12

74

Hydrogen Q-disease: mechanism

- Mechanism (courtesy of D. Proch)
 - Hydrogen can move freely in Nb at room temperature as interstitial impurity
 - There is a phase transition to NbH_x around 130K
 - NbH_x has a slightly larger lattice constant as compared to pure Nb
 - NbH_x will settle at lattice distortions or at the surface
 - Around 130 K NbH_x will migrate to the surface and produce RF losses (it is a normal conductor)
 - At very low temperatures NbH_x will not move any more
 - Cure against H-disease
 - Fast cool down (typical condition at vertical test with dewar cooling
 - Degassing of Nb at temperatures around 800°C (or higher)

Hydrogen Q-disease: mechanism

• Nb-H phase diagram

Avoid Q-disease

- Use of cooled (< 20C) BCP acid
- Removal of H during EP by venting and protection with cloth
- No grinding / cutting / EDM with water
- Annealing at > 600C
- Improved analysis and understanding of EP electrolyte
 => more investigations + effort necessary
- BUT:

rare cases of Q-disease found instead of above precautions

=> explanations at this workshop ??

Increased Residual Resistance

- No full understanding, but many sources identified!
- Surface contamination
 - Particles
 - Adsorbed gases especially hydro carbons (polluted vacuum systems + pumps)
- Lossy oxides
 - contribution < $1n\Omega$ for well-prepared cavities
- External magnetic field

- Frozen-in-flux during cool down results in increased losses of ~ 3-5 $n\Omega/\mu T$ in GHz- cavities according to $R_{fl} = \eta \frac{B_{ext}}{B_{c2}} R_{surf,nc}$

=> For $Q_0 > 10^{10}$ static magnetic field < 2 μ T

=> cryoperm shield necessary

Thanks !

 Thanks to all colleagues who provided me information, especially:

Gianluigi Ciovati, Arti Dangwal-Pandey, Andre Gössel, Eiji Kako, Denis Kostin, Lutz Lilje, Günter Müller, Hasan Padamsee, Enzo Palmieri, Dieter Proch, Kenji Saito, Bernhard Visentin, Hans Weise

Some Literature

• In general:

- Proceedings of the SRF Workshops
- H.Padamsee, J.Knobloch, T.Hays, RF Superconductivity f. Accelerators,
- 1998 (=> new edition available?)
- Overview articles e.g. H. Padamsee, Supercond. Sci. Technol., 14 (2001)
- Field emission + cleaning specific:
 - E. Ciapala et al., SRF Workshop 2001
 - W. Kern ed., Handbook of Semiconductor Cleaning Technology, 1993
 - P. Kneisel, B. Lewis, SRF Workshop, 1995
 - P. Kneisel, Contamination Workshop Jlab, 1997
 - D.L. Tolliver, Handbook of Contamination Control in Microelectronics, 1988

• Q-drop:

- G. Ciovati, 12th Workshop on RF Superconductivity, Cornell, 2005
- B. Visentin, International Workshop on Thin Films, Legnaro, 2006
- V. Palmieri, 12th Workshop on RF Superconductivity, Cornell, 2005

2007-10-12

The end !!

(courtesy of H. Weise)

81

Addendum:

• Additional transparencies for explanation!

Detlef Reschke

Cavity preparation

- BCD cavity preparation scheme:
 - Cleaning after fabrication, entrance-check + 1. tuning
 - Electropolishing (EP) of (120-150) µm for removal of damage layer
 - 800C firing for mechanical stress release & H-degassing
 - Electropolishing for final preparation (20-50)µm
 - HPR + Assembly + Vertical acceptance test

But Work needed: Reproducibility in Preparation

ACD: Large-grain + mono-crystal cavities

- Activities on large-grain + single-crystal single-cell cavities at JLab, KEK, DESY, …
- 3 nine-cell cavities at DESY after BCP treatment only: $E_{acc} = 28 \text{ MV/m}$

