

... for a brighter future

Status of SC Spoke Cavity Development

(WE302)

Speaker: Mike Kelly

SRF 2007 Oct. 14 -19, 2007, Beijing, China

U.S. Department of Energy

UChicago
Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

SC Linac Technologies for Mid-Beta

Outline

- I. Background
- **II.** Applications
- III. Latest Developments
- **IV.** Field Performance
- V. Ancillary Components (Coupler, Tuners)

THANK YOU

Jean Delayen (JLab) Guillaume Olry (IPN Orsay) Zack Conway (ANL/Cornell) Yvgeny Zaplatine (Jülich) Alberto Facco (INFN Legnaro)

I. Background Single-Spoke Cavities for Mid-Beta

1st SC spoke 1991 (funded through SDI)

High-Beta~1.0

850 MHz β =0.28 ANL

340 MHz β =0.29 ANL

350 MHz β =0.175 LANL 352 MHz β =0.15 IPNO 325 MHz β =0.22 FNAL/Zanon

352 MHz β =0.35 IPNO

I. Background Multi-Spoke Cavities

360 MHz β =0.1 Frankfurt

760 MHz β =0.2 Juelich

345 MHz β =0.40 ANL

345 MHz β=0.50 ANL

345 MHz β =0.63 ANL

II. Applications Proposed Spoke (HWR) Cavity Applications

Applications	Frequency (MHz)	Beta (v/c)	Particle type	# of Spoke or HWR Cavities (total cavities)	Duty Factor	
AEBL	345	0.4,0.5, 0.62	Proton to Heavy-Ion	134 (207)		
ISF	322 (HWR)	0.285, 0.425	Proton to Heavy-Ion	297 (481)	CIM	
EURISOL	352	0.3, 0.385	Proton Light-Ion	100-200	CVV	
XADS, APT	350	0.17,0.35	Droton	100 (190)		
Project X	325	0.2-0.6	FIOIOII	90 (420)	Pulsed	
SARAF	176 (HWR)	0.09, 0.15	Proton, Deuteron	42	CW	

II. Applications: Spoke –cavity based AEBL

Layout for the AEBL driver linac

Advanced Exotic Beam Laboratory

Reference [9]

II. Applications: Eurisol

III. Development: Mechanical Design

III. Development: Mechanical Design

Before Machining Ribs $\Delta f/\Delta P$ measured = -12.4 Hz/torr After Machining Ribs

Support ribs in E field and H field to essentially eliminate pressure sensitivity

III. Development: Electromagnetic Design

Lowest TEM-like mode

Example of Mode Spacing

3-spoke 9-ce

9-cell (TESLA)

Mode #	Freq. (MHz)	∆f/f % of f _{ACC}	Freq. (MHz)	∆f/f % of f _{ACC}
1	345		1275.6	1.7
2	365	5.7	1277.6	1.6
3	401	14	1280.7	1.4
4	442	28	1284.5	1.1
5	482	40	1288.5	0.8
6	519.7	51	1292.4	0.5
7	520.2	51	1295.5	0.2
8	534	55	1297.6	0.05
9	619	79	1298.3	
10	679	97		

TEM modes strongly coupled; Large mode splitting; No cell tuning needed

Easy radial access; no trapped modes; good for HOM extraction?

III. Development: Optimizing E_{PEAK}

III. Development: Optimizing B_{PEAK}

NAL LABORATOR

IV. Performance: A pair of triple-spoke cavities at 2 Kelvin

IV. Performance: Best Values Surface Electric Field

IV. Performance: Best Values Surface Magnetic Field

V. Ancillary components: Couplers

Fully variable over 50 dB

(window) – IPN Orsay

Cavities – Ph.D. Thesis, Zack Conway

Outlook for SC Spoke Cavities

Superconducting cavities for the full velocity range required for proton and heavy-ion linacs have been developed

Superconducting Spoke Cavities...

- Span most of the full velocity region
- Have large acceptance, low rf losses, good mechanical properties and operate at high accelerating gradients
- May have interesting applications for electron linacs (very high beam currents, difficult HOM extraction)
- Represent the technology of choice for many intermediate velocity ion linac applications
- Spoke cavities are ready for primetime

References

- [1] J. R. Delayen, "Application of RF Superconductors to Linacs for High-Brightness Proton Beams", Nucl. Inst. Meth. B40/41 892-895 (1989).
- [2] K.W. Shepard, et al., "Development of Niobium Spoke Cavities for a Superconducting Light-ion Linac", LINAC 1998 (1998).
- **[**3] T. Tajima et al., "Results of Two LANL β =0.175, 350 MHz, 2-Gap Spoke Cavities", PAC2003 (2003).
- [4] S. Bousson et al., "Spoke Cavity Developments for the Eurisol Driver", LINAC 2006 (2006).
- [5] G. Lanfranco et al., "Production of 325 MHz Single Spoke Resonators at FNAL", PAC 2007 (2007).
- [6] H. Podech et al., "Status of the Superconducting CH Structure", PAC2007 (2007).
- [7] K.W. Shepard, M.P. Kelly, J.D. Fuerst, M. Kedzie, and Z.A. Conway, Superconducting Triple-Spoke Cavity for β =0.5 lons, Proc. of the PAC-2005, p. 4344.
- [8] K.W. Shepard, M.P. Kelly, J.D. Fuerst, M. Kedzie, and Z.A. Conway, Prototype Superconducting Triple-Spoke Cavity for beta=0.63, Proc. of the PAC-2005, p.4338
- [9] P.N. Ostroumov, J.D. Fuerst, M.P. Kelly, B. Mustapha, J.A. Nolen, K.W. Shepard, Accelerators for the Advanced Exotic Beam Facility in the U.S., PAC-2007, p. 1664.
- [10] A. Facco, Private communication
- [11] Z.A. Conway "
- [12] R. Wanzenberg, "Monopole, Dipole and Quadrupole Passbands of the TESLA 9-cell Cavity", TESLA 2001-33, September 2001
- [13] G. Appolinari et al., "Design of 325 MHz Single and Triple Spoke Resonators at FNAL", LINAC 2006 (2006).
- **[**14] J.R. Delayen, "Medium-β Superconducting Accelerating Structures", SRF 2001 (2001).
- [15] Elliptical cell data from Lutz Lilje, Private communication
- [16] K.W. Shepard et al., "Variable CW RF Power Coupler for 345 MHz Superconducting Cavities", PAC2007 (2007).
- [17] G. Olry, Private communication

