THERMAL DESIGN STUDIES OF NIOBIUM SRF CAVITIES

A. Aizaz, T.L. Grimm, N.T. Wright

Michigan State University
East Lansing, MI 48824

Oct 17, 2007

This research is funded by the Fermi National Accelerator Laboratory
Heat Generation In SRF Cavities

\[q'' = \frac{R_s}{2\mu_0^2} B^2 \]

\[R_s = A \frac{f^2}{T_s} \exp\left(-\frac{\Delta(0)}{K_B T_s}\right) + R_o \]

\[B_c(T_s) \approx 180 \left[1 - \left(\frac{T_s}{9.2} \right)^2 \right] \]
Heat Transfer Problem

Assumptions:
• Steady state
• No internal heat generation (surface penetration of B is in the order of nanometers)

\[q'' = \frac{\Delta T}{R_T} \]
\[\Delta T = (T_s - T_b) \]
\[R_T = \left(\frac{e}{k} + \frac{1}{h_k} \right) \]
Thermal-magnetic interactions in defect free cavities

Motivation

- Improved k & h leads to
 - Higher B and thus greater accelerating gradients, and
 - Smaller T_s and thus low R_s providing reduced cryogenic load

Cavity Parameters

- $R_o = 5 \ \text{n}\Omega$
- $e = 3 \ \text{mm}$
- $T_b = 2 \ \text{K}$
- $f = 1.3 \ \text{GHz}$
- $RRR = \frac{\rho_{300\text{K}}}{\rho_{4.2\text{K}}} = 230$

Units:
- k: (W/cm/K)
- h: (W/cm²/K)
Outline of Experiments

Samples:
- Two cylindrical (RRR 232) – Tokyo Denkai
- Two rectangular flat plates (RRR 390) – FermiLab/Wah Chang
- One single crystal and one bi crystal sample (RRR 280) – JLab/CBMM

Treatments:
- Cylindrical sample 1
 - 3% strain
 - Titanification
- Cylindrical sample 2
 - Surface deformation (SI >3)
 - 750 °C heat treatment
 - Titanification
- Flat plate samples
 - 750 °C heat treatment
 - Titanification
 - RRR measurement
- Single/bi crystal samples (EDM cut)
 - Baseline measurements

For all samples,
- 750 °C heat treatment for 2 hrs – Fermi Lab
- Titanification at 1300 °C for 2 hrs and then at 1200 °C for 4 hrs – Cornell University
Experimental Apparatus

Sample holder assembly qty 2 shown typical
Germainium sensor in LHe
To vacuum pump

C1, C2, C3 Heater

Conflat flange

Flat plate Nb sample

Temperature Sensor

Single Crystal Niobium

Heater

Heat Sink

2006/10/27
Results

Cylindrical sample 1

<table>
<thead>
<tr>
<th></th>
<th>As received (M. polish + light BCP etch)</th>
<th>After 3% strain</th>
<th>Post-titanification</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_k</td>
<td>–</td>
<td>No change</td>
<td>Increased (~125% at 2.1 K)</td>
</tr>
<tr>
<td>k</td>
<td>Phonon peak</td>
<td>No phonon peak</td>
<td>Phonon peak recovered; No improvement above 3 K</td>
</tr>
</tbody>
</table>

Post-titanification:
1300 °C (2 hrs), 1200 °C (4 hrs)
Results (cont.)

Cylindrical sample 2

<table>
<thead>
<tr>
<th></th>
<th>As received (Machine cut)</th>
<th>After surface deformation</th>
<th>Post-heat treatment 750 °C (2 hrs)</th>
<th>Post-titanification 1300 °C (2 hrs), 1200 °C (4 hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_k)</td>
<td>–</td>
<td>Increased (~75%)</td>
<td>Increased (~100%)</td>
<td>Increased (~30%)</td>
</tr>
<tr>
<td>(k)</td>
<td>Phonon peak</td>
<td>No phonon peak</td>
<td>No significant recovery of phonon peak</td>
<td>Phonon peak recovered; No improvement above 3 K</td>
</tr>
</tbody>
</table>
Results (cont.)

Flat plate samples

<table>
<thead>
<tr>
<th></th>
<th>As received</th>
<th>Post-heat treatment</th>
<th>Post-titanification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>750 °C (2 hrs)</td>
<td>1300 °C (2 hrs), 1200 °C (4 hrs)</td>
</tr>
<tr>
<td>k</td>
<td>No phonon peak</td>
<td>Slight increase @ < 2.5 K</td>
<td>Phonon peak recovered; significant decrease > 2.5 K</td>
</tr>
</tbody>
</table>

- Post-titanification thermal conductivity measurements suggest $RRR \sim 80$
- Post-titanification expectation of $RRR \sim 600$
- Twice repeated RRR measurements in samples cut from same plate indicate $RRR \ 67 \pm 20\%$ confirming above measurements
Results (cont.)

Single/Bi crystal samples (RRR 280)

- Reduced phonon contribution observed in either sample
- Both samples to be annealed and re-tested
Plastic deformation caused the phonon peak to disappear
 - Thermal conductivity of Nb decreased by ~80% at 2 K

Annealing at ~750 °C for 2 hrs insufficient to recover the phonon peak

Annealing at ~1200 – 1300 °C for 6 hrs during titanification recovers the phonon peak

Kapitza conductance persistently increased after each heat treatment
 - Total increase is ~300% at 2.1 K due to annealing and titanification

Post titanification RRR of flat plate sample 67 ± 20 %
Recommendations / Future Steps

- Numerical simulations demonstrate the importance of k and h in the performance improvement of defect free SRF cavities.

- Titanification found to be the single most important step to improve both k and h of the SRF cavities.

- Re-purification of flat plate samples.

- Low and moderate temperature annealing of single and bi-crystal samples.
Questions ?