# Prospects for Higher *T<sub>c</sub>* Superconductors for SRF Application

Xiaoxing Xi

Peking University, Beijing, China and Penn State University, University Park, PA, USA

#### Aknowledgements

Anne-Marie Valente-Feliciano (JLab), T. Tajima (LANL), Chenggang Zhuang, Qing-Rong Feng (Peking Univ.), Shufang Wang (PSU), Mina Hanna, Kamel Salama (Univ. Houston), Yusheng He (IOP, CAS), Guohua Zhang, Sheng Luo (USTB)

> October 16, 2007 SRF 2007 Beijing, China



Supported by ONR, NSF, PRF, 973 Proj.

# Outline

- Introduction
- B1 compounds and A15 compounds
- High-temperature superconductors (HTS)
  - Short coherence length
  - *d*-wave gap symmetry
- $MgB_2$ 
  - Potential for low  $R_s$  and high ultimate critical field
  - Properties at RF
  - Processing issues
- Conclusions

# **Looking Beyond Nb**

Nb has the highest  $T_c$  for a pure metal and the highest lower magnetic field  $H_{c1}$ 

• Nb cavities performance have reached close to its theoretical limit ( $H \approx H_c = 200 \text{ mT}$ )



- For further improved cavity RF performance, innovation needed
- Higher  $T_c$ , potentially higher  $H_c$
- Substrates with higher thermal conductivity
- Potentially cryogenics cost reduction if cavity operation temperature at 4.2K or higher

# Search for Higher $T_c$ Materials for RF Cavities



High RF Critical Field

$$H_{c} = \frac{H_{c2}}{\sqrt{2\kappa}}$$
$$H_{sh} \approx 0.75 H_{c} \text{ for } \kappa >> 1 \quad (?)$$

$$\kappa = \frac{\lambda}{\xi}$$

• Large thermodynamic critical field  $H_c$  or superheating field  $H_{sh}$ 

• Small ĸ

• Balance among smal penetration length  $\lambda$ , large coherence length  $\xi$ , and high upper critical field  $H_{c2}$ 

#### Small Q-Slope

• Weak field dependence (low microwave nonlinearity)

#### **Properties of Various Superconductors**

| Material  | Crystal<br>structure               | Anisotropy | Т <sub>с</sub> (К)       | H <sub>c2</sub>        | In-plane<br>coherence<br>length<br>$\xi$ (0) (nm) | In-plane<br>penetration<br>depth<br>λ(0) (nm) | $ ho(T_c)$<br>(μ $\Omega$ cm) |
|-----------|------------------------------------|------------|--------------------------|------------------------|---------------------------------------------------|-----------------------------------------------|-------------------------------|
| Nb47wt%Ti | Body-centred cubic                 | Negligible | 9                        | 12 T (4 K)             | 4                                                 | 240                                           | 60                            |
| Nb₃Sn     | A15 cubic                          | Negligible | 18                       | 27 T (4 K)             | 3                                                 | 65                                            | 5                             |
| MgB₂      | P6/ <i>mmm</i> hexagonal           | 2–2.7      | 39                       | 7 T (4 K)              | 6.5                                               | 40                                            | 0.1                           |
| YBCO      | Orthorhombic<br>layered perovskite | 7          | 92                       | >100 T (4 K)           | 1.5                                               | 150                                           | ~40–60                        |
| Bi-2223   | Tetragonal<br>layered perovskite   | ~50–100    | 108                      | >100 T (4 K)           | 1.5                                               | 150                                           | ~150–800                      |
| Nb<br>NbN |                                    |            | <mark>9.2</mark><br>16.2 | <mark>0.4</mark><br>15 | <mark>22</mark><br>3.6                            | <b>40</b><br>200                              | <b>2</b><br>70                |

Larbalestier et al., Nature 414, 368 (2001)

#### **B1** compounds and A15 compounds

 $R_{s}$  (BCS) versus (  $\rho_{0}, T_{c}$ )



— B1 compounds: NbN, NbTiN, etc. High resistivity.



— A15 compounds: Nb<sub>3</sub>Sn, V<sub>3</sub>Si, Mo<sub>3</sub>Re, etc.



Vaglio, Particle Accelerators 61, 391 (1998)

#### **1.5 GHz Nb<sub>3</sub>Sn Cavity by Sn Thermal Diffusion**



Fig. 7 Q vs. Epeak of the first two Nb3SN-coated 1.5 GHz single-cell cavites in comparison to pure Nb at 4.2 K and 2 K frem CEBAF.

G. Müller et al., 1985

- Effort at Wuppertal ended in the '80s
- Nb<sub>3</sub>Sn cavities actively investigated at LNL-INFN

#### **Properties of Various Superconductors**

| Material  | Crystal<br>structure               | Anisotropy | Т <sub>с</sub> (К)       | H <sub>c2</sub>        | In-plane<br>coherence<br>length<br>$\xi$ (0) (nm) | In-plane<br>penetration<br>depth<br>λ(0) (nm) | $ ho(T_c)$<br>(μ $\Omega$ cm) |
|-----------|------------------------------------|------------|--------------------------|------------------------|---------------------------------------------------|-----------------------------------------------|-------------------------------|
| Nb47wt%Ti | Body-centred cubic                 | Negligible | 9                        | 12 T (4 K)             | 4                                                 | 240                                           | 60                            |
| Nb₃Sn     | A15 cubic                          | Negligible | 18                       | 27 T (4 K)             | 3                                                 | 65                                            | 5                             |
| MgB₂      | P6/ <i>mmm</i> hexagonal           | 2–2.7      | 39                       | 7 T (4 K)              | 6.5                                               | 40                                            | 0.1                           |
| YBCO      | Orthorhombic<br>layered perovskite | 7          | 92                       | >100 T (4 K)           | 1.5                                               | 150                                           | ~40–60                        |
| Bi-2223   | Tetragonal<br>layered perovskite   | ~50–100    | 108                      | >100 T (4 K)           | 1.5                                               | 150                                           | ~150–800                      |
| Nb<br>NbN |                                    |            | <mark>9.2</mark><br>16.2 | <mark>0.4</mark><br>15 | <mark>22</mark><br>3.6                            | <b>40</b><br>200                              | <b>2</b><br>70                |

Larbalestier et al., Nature 414, 368 (2001)

### **HTS for Passive Microwave Devices**

#### 10<sup>-1</sup>E 77K Cu 10-2 surface resistance [0] 10<sup>-3</sup> YBCO on LaAlO3 1 Lincoln Lab. 2 Siemens 3 Conducts/HP 10<sup>-4</sup> YBCO 4 FZ julich 5 NTT 6 Univ. Houston 7 UUniv. Houston 8 UCLA 10<sup>-5</sup> YBCO on MgO 9 RSRE YBCO on sapphire 10 FZ Jülich 10 10 100 frequency [GHz]

#### **Surface Resistance of HTS**

Klein, Rep. Prog. Phys. 65, 1387 (2002)

Low microwave surface resistance of superconductors allows for microwave devices with high performance and low loss. HTS Filter System for Cell-Phone Base Station



Clarke & Larbalestier, Nature Phys. 2, 794 (2006)

#### **Strong Power Dependence in Polycrystalline HTS**



Dimos et al., PRB 41, 4038 (1990).

#### **Weaker Power Dependence in Epitaxial HTS Films**

#### Epitaxial Films of YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub>



Single-crystallinity is important for the properties of HTS, including microwave properties such as *Q* and nonlinearity.

### Symmetry of Gap in Superconductors





d-wave Gap Symmetry



Fischer et al., Rev. Mod. Phys. 79, 353 (2007) Van Harlingen, Rev. Mod. Phys. 67, 515 (1995)

While conventional superconductors such as Nb are *s*-wave, high temperature cuprate superconductors are *d*-wave, having nodes in the gap.

# Effect of *d*-Wave Symmetry on RF Nonlinearity



Dahm & Scalapino, PRB 60, 13125 (1999)

The *d*-wave symmetry of gap leads to nonlinear Meissner effect, characterized by an increase in intermodulation distortion (IMD).

Improvement of film quality does not help at low temperature.

Oates et al., PRL 93, 197001 (2004)

#### **Properties of Various Superconductors**

| Material  | Crystal<br>structure               | Anisotropy | Т <sub>с</sub> (К)       | H <sub>c2</sub>        | In-plane<br>coherence<br>length<br>$\xi$ (0) (nm) | In-plane<br>penetration<br>depth<br>λ(0) (nm) | $ ho(T_c)$<br>(μ $\Omega$ cm) |
|-----------|------------------------------------|------------|--------------------------|------------------------|---------------------------------------------------|-----------------------------------------------|-------------------------------|
| Nb47wt%Ti | Body-centred cubic                 | Negligible | 9                        | 12 T (4 K)             | 4                                                 | 240                                           | 60                            |
| Nb₃Sn     | A15 cubic                          | Negligible | 18                       | 27 T (4 K)             | 3                                                 | 65                                            | 5                             |
| MgB₂      | P6/ <i>mmm</i> hexagonal           | 2–2.7      | 39                       | 7 T (4 K)              | 6.5                                               | 40                                            | 0.1                           |
| YBCO      | Orthorhombic<br>layered perovskite | 7          | 92                       | >100 T (4 K)           | 1.5                                               | 150                                           | ~40–60                        |
| Bi-2223   | Tetragonal<br>layered perovskite   | ~50–100    | 108                      | >100 T (4 K)           | 1.5                                               | 150                                           | ~150–800                      |
| Nb<br>NbN |                                    |            | <mark>9.2</mark><br>16.2 | <mark>0.4</mark><br>15 | <mark>22</mark><br>3.6                            | <b>40</b><br>200                              | <b>2</b><br>70                |

Larbalestier et al., Nature 414, 368 (2001)

# MgB<sub>2</sub>: An Exciting Superconductor



#### **SCIENCE**

- BCS,  $T_c = 40$  K
- Two bands with weak inter-band
- scattering:  $\sigma$  band and  $\pi$  band
- Two gaps: A superconductor with two order parameters



- 25 K operation, much less cryogenic

- Superconducting digital circuits

requirement than LTS Josephson junctions



# Challenges in Growth of MgB<sub>2</sub> Films



Liu et al., APL 78, 3678 (2001)

#### **PHASE STABILITY**

 Mg pressure for the process window is very high for high temperature growth For example, at 600° C Mg vapor pressure of 0.9 mTorr or Mg flux of 500 Å/s is needed

— Automatic composition control for all Mg:B ratio above 1:2.

#### **CONTAMINATIONS**

— Mg reacts strongly with <u>oxygen</u>: forms MgO, reduces Mg vapor pressure. Requires UHV.

— <u>Carbon</u> doping: reduces  $T_c$ . Source materials should be carbon-free.

### **Hybrid Physical-Chemical Vapor Deposition**

Schematic View



### Very Clean HPCVD MgB<sub>2</sub> Films: RRR > 80



### Potential Low BCS R<sub>s</sub> for MgB<sub>2</sub> RF Cavity



BCS  $R_s$  for MgB<sub>2</sub> presented in the same coordinates as in the figure.

Long  $\xi$  and Short  $\lambda$  in HPCVD MgB<sub>2</sub> Films



**Penetration Depth** 



Microwave measurement: sapphire resonator technique at 18 GHz.

 $\kappa = \lambda \xi \approx 6$ 

$$H_c = H_{c2} / \sqrt{2\kappa} \approx 820 \text{ mT}$$

$$H_{sh} pprox 0.75 \ H_c pprox 620 \ {
m mT}$$

Jin et al, SC Sci. Tech. 18, L1 (2005)

# **Polycrystalline HPCVD MgB<sub>2</sub> Films on YSZ**



Polycrystalline MgB<sub>2</sub> films on YSZ grown by HPCVD show similar low  $R_s$  to epitaxial films on sapphire substrate.

Pogrebnyakov *et al*, IEEE Trans. Appl. Supercond. 17, 2854 (2007)

### **Smooth Surface of HPCVD Films**

# -1.00 -0.75 -0.50 -0.25 - 0 0.25 0.50 0.75 0

Pure MgB<sub>2</sub>

Small amount of N<sub>2</sub> added in the deposition atmosphere



#### RMS Roughness = 3.64 nm

RMS Roughness = 0.96 nm

### Absence of Dendritic Magnetic Instability in Clean HPCVD Films

**Flux Entry** 



**Remnant State** 





(Ye et al. APL 85, 5285 (2004))

### **Effects of Two Gaps on Microwave Nonlinearity**



 It has been predicted theoretically that

 nonlinearity in MgB<sub>2</sub> is larger than 40 K BCS superconductor due to existence of two bands.
 compares favorably with HTS at low temperature

— Manipulation of interband and intraband scattering could improve nonlinearity.



### Microwave Nonlinearity of HPCVD MgB<sub>2</sub> Films



— Result in agreement with Dahm – Scalapino prediction.

— Modification of interband and intraband scattering key to low nonlinearity.

Cifariello et al, APL 88, 142510 (2006)

### **HPCVD System at Peking University**

#### **HPCVD** Lab

#### **HPCVD** Reactor



#### **Microwave Properties of PKU HPCVD Films**







# Technical Approach

Reactive evaporation using the *pocket heater* Directly addresses MgB<sub>2</sub> growth difficulties



Improving the Quality of Wireless

#### **Microwave Nonlinearity in STI Films**



### **HPCVD Using Pocket Heater**



#### Differences from reactive co-evaporation:

- $-B_2H_6$  used as boron source instead of e-beam evaporation
- Hydrogen used as the carrier gas instead of HV
- Deposition temperature in broader range

#### Advantages:

- Large area and double sided films
- Potential for scale up for wires

#### **HPCVD MgB<sub>2</sub> Films on Metal Substrates**



High  $T_c$  has been obtained in polycrystalline MgB<sub>2</sub> films on stainless steel, Nb, TiN, and other substrates.

### High-Temperature Ex-Situ Annealing



Kang *et al*, Science 292, 1521 (2001) Eom *et al*, Nature 411, 558 (2001) Ferdeghini *et al*, SST 15, 952 (2001) Berenov *et al*, APL 79, 4001 (2001) Vaglio *et al*, SST 15, 1236 (2001) Moon *et al*, APL 79, 2429 (2001) Fu *et al*, Physica C377, 407 (2001)





Clean B precursor layer leads to clean MgB<sub>2</sub> film.

### **Coating SRF Cavity with a Two-Step Process**



Coating cavity with B layer at ~400-500° C using CVD



Reacting with Mg to form  $MgB_2$  at ~ 850-900 ° C in Mg vapor

### Conclusion

— For higher  $T_c$  superconductors beyond Nb for RF cavities, materials with high  $T_c$ , low residual resistivity, low microwave nonlinearity, and high  $H_c$  and  $H_{sh}$  are required for high Q and high ultimate RF critical field

— A15 compounds such as  $Nb_3Sn$  are promising

— Due to short coherence length and *d*-wave gap symmetry, high- $T_c$  cuprate superconductors show poor power dependence

- Clean  $MgB_2$  thin films have excellent properties:
  - low resistivity (<0.1  $\mu\Omega$ cm) and high  $T_c$  promise low BCS surface resistance
  - long coherence length and short penetration depth promise high  $H_c \sim 820 \text{ mT}$
  - smooth surface (RMS roughness < 10 Å)</p>
  - well connected grains and clean grain boundaries
  - good thermal conductivity (free from dendritic magnetic instability)
  - nonlinearity properties can be tuned by changing scattering in the two bands,
     e.g. by carbon doping
- Coating RF cavities with  $MgB_2$  is feasible:
  - films on some metallic substrates, polycrystalline films maintain good properties
  - MgB<sub>2</sub> films prepared by reacting CVD boron films with Mg vapor show good properties. The technique is compatible to coating of cavities.