ALPI QVVR and S-RFQ operating experience

Giovanni Bisoffi, INFN-LNL

Machine status
 QWR & S-RFQ performance and operation issues
 On-going improvements

Beam	E [MeV] - (1 foil)	Beam current [pn	A] E [MeV] - (2 foils)	
¹² C	240	10	250	
¹⁶ O	290	30	320	
³² S	440	18	550	
⁴⁸ Ca	440	1	610	
⁵⁸ Ni	540	5	750	
⁶⁵ Cu	530	2	750	
⁷⁴ Ge	515	2	800	
⁸² Se	560	1	800	
⁹⁰ Zr	530	1.5		
¹⁰⁴ Ru	550	1		
Beam		E [MeV]	Beam Current [pnA]	
²² Ne ⁴⁺		150	10	
⁴⁰ Ar ⁹⁺		350	4÷10	
⁸⁴ Kr ¹⁵⁺		600	5÷10	
¹³² Xe ¹⁸⁺		720	5÷10	
¹³² Xe ²²⁺		920	3÷5	

Beam sharing among Tandem, Tandem+ALPI and PIAVE+ALPI

Tandem
Tandem_ALPI
PIAVE-ALPI

3600 h/yr of beam on target

Resonator performance and operation

Cu-based cavities
 Full Nb cavities (QWRs and SRFQs)

ALP superconducting linac ~ 70 Quarter Wave Resonators in 21 cryostats, @ 4.2 K

 $\frac{\text{Original ALPI Plan}}{\text{E}_{f}: 6-20 \text{ MeV/u},}$ First stage: 93 Pb/Cu QWR, $E_{a} = 3 \text{ MV/m}$ $E_{p} = 15 \text{ MV/m}$ Second stage: ECR+SRFQ $(V_{eq} \sim 8 \text{ MV})$

1994: ALPI starts operation with 16 resonatorsIn a few years the number of resonators increased to 48 (in 13 cryostats)

1992: ALPI during first assembly

Three technologies launched for QW Resonators

Pb/Cu: initial phase, readily available
Full Nb R&D
Nb/Cu (sputtering) R&D

1994-1998: Completion of Pb/Cu ALPI section at $\beta_0 = 0,11$

.

Meanwhile: R&D on full Nb and sputtered Nb resonators launched

Nb/Cu, 160 MHz, β_{opt}~0,13

Full Nb, 80 MHz, β_{opt}~0,055

 QWR by Nb/Cu DC biased sputtering - Start in1988, first prototype in 1991, a modified prototype (rounded shorting plate) reaches nearly top performance in 1993

 $Q_0 \sim 1,5 \times 10^9$, $E_a \sim 6$ MV/m at 7 W

 Full Nb QWR - prototypes for 80, 160, 240 MHz, first Q-curve of low β 80 MHz full Nb cavity in 1993

 $Q_0 \sim 1,2 \times 10^9$, $E_a \sim 6$ MV/m at 7 W

Off-line Q-curves of Nb/Cu sputtered resonators

On line E_a : beyond 6 MV/m Phase stability is not an issue ($\Delta f / \Delta P \sim 0,01 \text{ Hz/mbar}$)

From 1999: application of the sputtering technology on all $\beta_0=0,11$ cavities (Pb \rightarrow Nb)

- From 1999 urgent major maintenance on all mid β cryostats: 4 leaking units – cryogenic valve, actuated by a 16 bar He circuit
- Meanwhile: preparation of mid β Cu substrates for Pb replacement with Nb
- Despite: smaller shorting plate radii, sharp edges on beam ports and coupling holes, brazed joints (brazing junk released during sputtering)

On going R&D: Further improvement in mid β QWR performance

Old shape

New shape

After sputtering

LNL is prototyping 4 new β_0 0,11 resonators:

- Beam ports by extrusion (rounded edges)
- Rounded shorting plate
- Capacitive coupler
- No holes in high current regions
- No brazing in outer resonator body

A.M. Porcellato, poster TUP38

Present lab RP authorization: 3 MV/m Expected in ALPI: $\sim 4,4 \rightarrow 5,5$ MV/m

Resonator performance and operation

Cu-based cavities
 Full Nb cavities (QWRs and SRFQs)

Full Nb QWR section (80 MHz, $\beta=0,55$)

β₀ 0,13

β₀ 0,11

•

Outer conductor: double wall instead of explosive bonding (high T treatments possible)

 $\mathbf{b} \mathbf{o} \mathbf{o} \mathbf{d}$

Prototypes (at 80, 160, 240 MHz) till 1993, then production of n.12 80 MHz β_0 =0,055 cavities

Bu

 Indispensable for A>100 Tandem beams and all PIAVE beams

 In 1998: 12 resonators were installed in ALPI

n.12 80 MHz, full Nb, β_0 0,055

Bu

••

Off-line Q-curves of full Nb QWRs

Superconducting RFQs

ACHIEVED RESULTS

- 1. **Q vs E** curve as specified
- Frequency locking by means of <u>VCX</u> (vibrations) and <u>mechanical tuners</u> (liquid He 2. preassure breathing), after ensuring <u>gentle</u> cryogenics conditions Classical RFQ split into 2, with 3. external bunching (relative phase must be found) ± 0,2 mm 4. alignment on beam axis for good transmission

SRFQs Q-curves

Q-curves loaded by the VCX fast tuners

Difficulties and challanges in full Nb resonators

- A zero order problem for QWRs: the cryogenic system cannot feed lower β₀ full Nb QWRs reliably (1998, solved 2004)
- Phase stability vs slow P changes and mechanical vibrations
- <u>QWRs</u>: improved slow tuners, dampers
 (E_a ~ 3÷4 MV/m), new RF system (aim: 5 MV/m)
- <u>SRFQs</u>: 2 large range tuners each, VCX Fast Tuners (ANL design)

Problem in feeding low β resonators with gas and liquid He

- 1996-1998: observation of unbalanced cryogenic loads
 Shield T (He gas) increases towards low β linac far end
- Ineffective shield cooling → anomalous liquid He evaporation → No liquid He transfer (CR04÷CR06 could not accumulate liquid He!)

2004 - Upgrade of ALPI cryogenic lines

- 2004: scheduled ALPI stop
 Cryogenic lines system reshaped
- <u>AP</u> = constant on each cryostat
- Additional tools mounted:
- 4 valve boxes
- P and T sensors
- 2 mass flow meters

Result of the upgrade

Shield temperatures are now much better balanced (whole linac cooling possible)

Noisy cryogenics urged the development of mech. Dampers for QWRs

Liquid He P occasionally changes by 100 mbar/min
 (Cu-based cavities: 0,01 Hz/mbar)
 Low beta QWR: Δf/ΔP up to 1 Hz/mbar
 Mechanical dampers can compensate up to 10 Hz/min changes (Modes at 42 Hz and 22 Hz)

Recording of amplitude distribution of frequency oscillations

Large He P jumps must be either eliminated or compensated by damper + efficient slow tuner

Slow tuners upgrade

- Replacement of standard cam-shaft tuner with the TRIUMF design QWR tuner actuated by a standard stepper motor
- Very small and reproducible backlash
- Resolution better than 0,33 μm (equivalent to 1 Hz frequency steps)
- Little magnetic material and no lubricants

Result: thanks to work on cryogenic lines, mechanical damper, slow tuner full Nb QWR operate at nominal field (3 MV/m), still limited by RF system

Present low β_0 QWR upgrade: RF system

- One more low β₀ cryostat with 4 cavities
- $P_{ampl} = 150 \rightarrow 1000 W$
- Upgraded rf system
 -LN cooled couplers
 -LN cooled RFlines
- More efficient "slotted" slow tuner

Expected result: $E_a = 3 \rightarrow 5 \text{ MV/m}$

SRFQs phase locking issue

$\Delta f/\Delta P \sim 40$ Hz/mbar !

 Gentle cryogenics
 VCX Fast Tuner (ANL design)

- They work very nicely as long as liquid He ΔP/Δt < 5 mbar/min (usually the case)
- Only drawback: early inexperience in using their electronics properly caused an avalanche of PDS shorts → extraordinary cryostat maintenance in Spring 2006

SRFQs are followed by 8 full Nb QWRs

Operational comparison of QWR (Nb/Cu and Full Nb) and SRFQs

	Nb/Cu QWR	Upgraded Nb/Cu	Full Nb QWR	Full Nb SRFQ
Ē _a [MV/m]	6,5	4,5	6,5	2,2 / 3,2
Ē _p [MV/m]	32	22,5	32	25
Ē _{a,op} [MV/m]	6	4,4	3 / 4,1	1,9 / 2,8
RT RFE conditioning [h]	ng [h] 48 48		96	32
Cooldown time per cryostat [h	8÷12	8÷12	18	12
4K RFE conditioning [h]	None	None	2	20
HPPP [h]	4	4	None	100
He conditioning [h]	6	6	6	20
Q-disease	None	None	Some	None
Deconditioning	None	None	None	On SRFQ2
Phase locking tools	O.C.	0.C.	O.C.+Damper	VCX
Unlock rate [day ⁻¹]	0	0	0÷5	<u>0÷</u> 5

Setup of E_a and ϕ of resonators

First step: Longitudinal dynamics is defined in a dedicated spreadsheet

The source buncher delivers **1.2 ns bunches** at **ALPI entrance** (i.e. 70deg@160MHz)

(tandem energy spread < 0.1 %)

Resonator +20° or -20° phases (and their amplitudes, in some cases) are regulated, so as to minimize the average phase width of the bunch and to keep its oscillations under control

Second step: Trace3D calculates transevrse dynamics

Longitudinal dynamics is inserted into a Trace3D sheet: quadrupole gradients are regulated, so as to have a beam which be well enough focused in the cavities and not too large in the magnets

Make sure that the chosen dynamics does **not** imply **too large quadrupole gradients**: otherwise back to Excel spreadsheet to changes resonators φ.

- 1. Possible longitudinal beam losses (and their cause) are searched
- 2. Quadrupole gradients are corrected in order to minimize transverse losses

Future perspectives

Challenges on SC cavity development from: 1. Experimental campaign with EU-detector AGATA 2. Use of PIAVE-ALPI as RNB accelerator

AGATA detector: a milestone for PIAVE-ALPI

(Advanced GAmma Tracking Array) 180 large Ge crystals, segmented 36 fold

- 4π set of γ detectors, designed to be operational at European Laborarories offering high intensity stable and unstable beams
 - Its demonstrator will be commissioned and tested for the first time at LNL (I) with PIAVE-ALPI beams (10/2008-04/2010)
- GANIL (F) (upgraded version): 2010-2012
- **GSI (D):** after 2012

To fulfill AGATA experimental specs: higher currents and energies of heavy ion beams are required on PIAVE-ALPI

¹³²Xe³⁶⁺ in 2009, with new ECRIS and upgraded low β section

PIAVE-ALPI resonators upgrade and their impact on beam final energy

A	GATA demonstrato	r, RNB a	ccel	pro	oiect			
			2007	2008	Funded	Mid β upgrade	High β extension	
	Resonators Ungrade Phases	CR03	0	5	5	5	5	F [MV/m]
		CR04-CR06	3,5	3,5	5	5	5	
		CR07-CR20	4,2	4,2	4,2	5,5	5,5	
		CR21-CR25					5,5	
		400 00.	****					
	Present ECRIS, stable beam	¹³² Xe ²⁰⁺	7,1					
	New ECRIS, stable beam	¹³² Xe ²⁶⁺		10,3	10,76	12,3	14,3	Energy [MeV/A]
	Charge breeder, RNB	¹³² Sn ²⁰⁺			8,7	9,8	11,3	
-	Low β_0 res. upgrade, new ECR (funded)							
Further mid β_0 cavity upgrade (cheap)								
1	Example 1 Five additional high β_0 cryostats							
1 m 1	Full Nb,	ower β ₀ se 80 MHz, β	ectio ₀ 0,04	n 47-0,	055	Mediun Nb/Cu, 16	n-High $β_0$ s δ0 MHz, $β_0$ (ection 0,11-0,13

Outlook

Since 20 yrs LNL have been involved in R&D of low beta resonators (QWRs in Pb/Cu, full Nb, Nb/Cu, SRFQs, cavities for high current applications)

 ALPI (and then PIAVE), currently working for an intense N.P. experimental programme (70% rejection factor), are steadily improving their perfomance

The opportunities offered by the AGATA array and the SPES project are giving further momentum in the same direction

Thanks to: A.M. Porcellato, A. Facco, P. Posocco