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Outline

• Low-Energy Rare Isotope Beams (RIBs) production
• Planned Low-Energy RIBs Facility at NSCL
• Re-accelerator

• Design considerations
• Accelerator system
• Beam dynamics
• Current status and future plan

• Summary
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Low-Energy RIB Production

• Strong demand from nuclear science for high quality 
low-energy RIBs for:
• Precision mass measurements & Laser spectroscopy
• Precision decay studies & Low energy coulomb 

excitations
• Transfer reaction studies of astrophysical reactions

• Two RIB production methods
• Isotope Separation On-Line (ISOL) 

• Produced at ~ rest
• REX-ISOLDE & TRIUMF

• Projectile Fragmentation
• Produced at ~ 50 MeV/u
• NSCL/MSU
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ISOL Facility Concept

• High beam quality and low beam energy

• Limited to longer life time (τ > 1s)
• Isotope extraction and ionization efficiency depend on 

chemical properties of element
• The most neutron-rich isotopes will have too low 

intensities and too short lifetimes to be suitable for re-
acceleration
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Projectile Fragmentation Facility Concept

• Modest beam quality and high beam energy
(E/A > 50 MeV/u)

• Suitable for short-lived isotopes (τ > 10-6 s)
• Physical method of separation, no chemistry
• Low-energy beams are difficult ( emittance too large)
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Fast RIBs Production at the NSCL

Experiments 

with 

fast RIBs
~ 100 MeV/u

• In-flight particle fragmentation method
• Coupled cyclotrons produce high energy primary 

beams
• Production target produce RIBs at velocity
• A1900 Fragment Separator separate RIBs in-flight
• Experiments performed with fast RIBs

• Nuclear structure/Nuclear reactions
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Low-Energy RIBs at the NSCL

• Prototype facility planned 
for stopping and re-
accelerating RIBs produced 
and separated in-flight

• Important step toward a 
next-generation rare-isotope 
facility in the United States

• Three key steps:
• Gas stopping
• Charge breeding
• Re-acceleration
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Gas Stopping Method

• Linear Gas Cell – works but has 
limitations
• Intensity-dependent 

extraction efficiencies
• Extraction time of ~100 ms
• Low stopping efficiencies for 

light beams
• “Cyclotron” Gas Stopper – under 

development
• Shorter extraction times
• Higher beam rate capability

He (0.1 -1 bar)

>50 MeV/u
eV

Georg Bollen/NSCL User Workshop 2007
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NSCL Gas Stopping Plan

• Possibility of both stopping methods 
at the NSCL
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Electron Beam Ion Trap (EBIT) 
Charge-Breeder

• Charge breeder
• 1+              N+
• More efficient acceleration
• Electron gun/collector
• Solenoid
• Trap electrodes
• 60 kV platform
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MSU Reaccelerator Beam Specifications

~ 1 keV/uEnergy Spread on Target

From 0.3 to 3.0 MeV/uEnergy Variability

~ 1 nsBunch Width on Target

~ 1 mmBeam Size on Target

12 keV/uEnergy

Output Beam Parameters ( On target)

± 0.2 %Energy Spread

0.6 π mm-mradTransverse Emittance 
(normalized)

0.2 – 0.4Q/A

Input Beam Parameters ( From EBIT)
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MSU Reaccelerator and RIA/ISF

• Design benefits from past RIA driver linac R&D 
efforts
• Many similar components
• Design experience
• Beam simulation tools
• SRF cavity and cryomodule prototyping

• Design and construction of the MSU reaccelerator 
will provide valuable experience for the future MSU 
Isotope Science Facility (ISF) 
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MSU Reaccelerator Layout

• Low Energy Beam Transport (LEBT)
• Radio Frequency Quadrupole (RFQ)
• Superconducting (SC) Linac
• High Energy Beam Transport (HEBT)
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Low Energy Beam Transport

• Transport, bunch and match 
RIBs into RFQ

• 4 electrostatic quadrupoles
• 2 Superconducting 
solenoids
• Multi-harmonic buncher 
(MHB)

• Three harmonics
• High bunching 
efficiency: ~ 82%
• Two λ/4 resonators

MHB
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Low Energy Beam Transport

Beam envelopes 
in the LEBT

Horizontal, vertical 
and longitudinal 
phase spaces at the 
exit of the LEBT

Beam simulated 
using RIAPMTQ 
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Reaccelerator RFQ

• CW operation
• Room temperature structure
• Achieve small longitudinal emittance 

• ~0.25 π kev/u-ns
• External multi-harmonic buncher

• Enhanced acceleration efficiency
• Shortened gentle bunching section

• Frequency: 80.5 MHz
• Length: 3.5 m
• Input energy: 12 keV/u
• Output energy: 600 keV/u
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RFQ Main Parameters

4.9Focusing strength

6.0Tip radius (mm)

7.3Average radius (mm)

1.15 2.58Modulation factor

-20Synchronous phase (degree)

94Number of cells

1.6Peak field (Ekilpatrick)

16.7Peak electric field (MV/m)

86.2Max. Intervane voltage (kV)

0.2 – 0.4Charge to mass ratio, Q/A



18

RFQ Beam Dynamics

The longitudinal 
acceptance (~ 0.8 π
keV/u-ns) and beam 
phase space at the 
entrance of the RFQ

Horizontal, vertical 
and longitudinal 
phase spaces at the 
exit of the RFQ

εz(90%) = ~0.29 π
keV/u-ns
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Superconducting Linac

• Acceleration or deceleration of the RIBs to the 
desired energy
• RFQ output energy: 600 keV/u
• Final energy: 300 keV/u ~ 3 MeV/u
• Maintain beam quality 

• SC linac advantages
• Requires very little rf power
• High accelerating gradient for CW operation 

(100% duty factor)
• Better operational flexibility and availability
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Two SRF Cavity Types Used

λ/4λ/4Τype

0.21 m0.095 mLength

30 mm30 mmAperture

5.62 MV/m4.84 MV/mEacc

46.5 mT28.2 mTBpeak

4.5 K4.5 KTemperature

0.46 MV

16.5 MV/m

80.5 MHz

0.041

1.18 MVVacc

20.0 MV/mEpeak

80.5 MHzFrequency 

0.085Optimum β
βopt=0.041 βopt=0.085
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βopt =0.085 Prototype Cavity
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βopt =0.041 Prototype Cavity
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SRF Cavity Prototype R&D

• QWR βopt=0.085  
prototyped and tested 
in 2003

• Q0: 5×108

• Ep: 20 MV/m

• QWR βopt=0.041  
prototyped and tested 
in 2007 – to be 
presented at Tuesday 
poster session 
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Transverse Focusing – Superconducting  
Solenoid

• Symmetric focusing
• Allow more cavities per 

cryostat
• 2 dipole corrector coils for 

central orbit correction
• Peak magnetic field: 9T
• Adjacent to superconducting 

cavities 
• Active end bucking coils and 

niobium shield  to minimize 
stray magnetic field

• Obtain ~10-6 reduction in B 
field
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Superconducting Linac Cryomodules

• 1st Cryomodule
• 2 Superconducting solenoids
• 1  λ/4 SC cavity, βopt=0.041
• Transverse and longitudinal matching

• 2nd Cryomodule
• 3 Superconducting solenoids
• 6  λ/4 SC cavities, βopt=0.041
• Acceleration/deceleration: 1.2/0.3 MeV/u

• 3rd Cryomodule
• 3 Superconducting solenoids
• 8  λ/4 SC cavities, βopt=0.085
• Acceleration/rebunching
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Superconducting Linac Prototype 
Cryomodules

• Prototype cryomodule fabricated

• 80.5 MHz βopt=0.085, λ/4 cavity

• 322 MHz βopt=0.285, λ/2 cavity

• Superconducting solenoid

• Superconducting quadrupole

• Testing in progress
• Cavity performance

• Magnet field effect on cavities

• RF frequency stability, 
amplitude and phase controls

• Will compare with vertical test 
results

λ/4
λ/2

Superconducting
Solenoid

Superconducting
Quadrupole
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SC Linac Prototype Cryomodules

   
(a) cold mass (c) inner MLI (e) outer MLI 

   
(b) top plate (d) 77 K shield (f) vacuum vessel 
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Superconducting Linac Performance - [1]

• Beam simulations using IMPACT (~3 MeV/u)

Beam transverse 
envelopes and 
longitudinal beta 
function along the 
SC linac

Beam energy gains 
along the SC linac
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Superconducting Linac Performance - [2]

• Adequate transverse and longitudinal acceptance
• No beam loss
• No transverse or longitudinal rms emittance growth

Horizontal, vertical 
and longitudinal 
phase spaces at 
the exit of the SC 
linac

Transverse and 
longitudinal rms 
emittances along the 
SC linac
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High Energy Beam Transport – [1]

• Achieve the required 
beam conditions on 
target
• π-phase advance cell

• 4 quadrupoles
• Cryomodule 

• Single λ/4 cavity, 
βopt=0.041
• Used as rebuncher

• Final focusing
• 4 quadrupoles
• Superconducting 
solenoid

Crymodule #4 
single λ/4 cavity

βopt=0.041
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High Energy Beam Transport – [2]

• RIBs accelerated to ~ 3.0 MeV/u
• ~88% of the RIBs within 1 ns and 1 keV/u 

Horizontal, vertical 
and longitudinal 
phase spaces on 
target

Energy spread and 
bunch width on 
target
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High Energy Beam Transport – [3]

• RIBs decelerated to ~ 0.3 MeV/u
• ~89% of the RIBs within 1 ns and 1 keV/u 

Horizontal, vertical 
and longitudinal 
phase spaces on 
target

Energy spread and 
bunch width on 
target
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Future Upgrades Possible

• Phase I: 0.3 ~ 3.0 MeV/u – In progress
• Upgrades: 0.3 ~ 12 MeV/u

• Additional SRF cryomodules
• NSCL High Bay Area expansion
• New experimental areas

3 MeV/u 7.5 MeV/u

12 MeV/u
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MSU Reaccelerator - Status

• Baseline accelerator system defined
• End-to-end beam simulations performed
• RFQ construction expected to be complete in 2009
• Superconducting cavity & cryomodule prototyping 

- test and design ongoing
• Experimental apparatus planning - underway
• Studies of beam diagnostics and realistic beam 

tuning scenarios - ongoing
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Planned Low-Energy RIB Facility 
at the NSCL

• R&D for gas stoppers, EBIT charge-breeder - on going
• The project expected to complete by 2009
• Will be the first facility of creating fast RIBs in-flight, 
stopping, charge-breeding, and re-accelerating them 
efficiently and with minimum loss


