Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m.b.H.

BESSY

Review of SRF Linac-Based FELs

(Current and Future)

J. Knobloch, BESSY

	Frequency (MHz)	Energy (MeV)	Current (mA)	Emittance (mm mrad)	Wavelength (µm)	Туре
JAEA-FEL Japan	500	17	5.2-40 (pulsed)	40	22	FEL, ERL
JLAB-FEL USA	1500	120	5-10	7	1-6 + UV(soon)	FEL, ERL
ELBE Germany	1300	12-40	1 mA	20	2-10	FEL
S-DALINAC Germany	3000	130	0.06		2.5-7	FEL, ERL
SCA, USA	1300	40-50	0.15		1-2	FEL,ERL
PKU FEL (under constr.)	1300	30	1-5	< 20	5-10	FEL
FLASH Germany	1300	1000	mA (pulsed)	3 (?)	> 6.5 nm so far	SASE- FEL

Demonstrator IR FEL for industrial material treatment (e.g., against stress corrosion cracking)

- Configuration in 2001
 - Pulsed operation: 1% DF (10 Hz x 1 ms x 10.4 MHz) due to available cryopower & radiation shielding
- Upgrade JAEA in 2002 for ERL mode
- Increased microbunch rep rate to 20.8 MHz (8 mA) + 50 kW IOTs for injector
- →FEL efficiency increased to 2.8 %
- Beam power = 136 kW \rightarrow 700 W FEL power (including extraction efficiency)

Superconducting Cavities for JAEA-FEL

- Superconducting 500 MHz system operating at 4.2 K
- $E_{\rm acc} = 5 \, {\rm MV/m}$
- Refrigerator is part of the cryostat: $Q_0 = 2E9 \rightarrow CW$ losses of order 100 Watt
- Variable input coupling, from 10^9 to $10^6 \leftarrow$ CW ERL operation theoretically possible
- Three HOM couplers
- HOM Measurements/calculations + BBU simulations \rightarrow BBU limit at about 3 A

ELBE @ Forschungszentrum Dresden-Rossendorf

- Full user facility, in operation since 2002
- Operates two FELs in the IR
- Also provide different beams for neutron production, positron production, bremstrahlung and x-radiation.
- For latter need ultra-low emittance beam

ELBE @ Forschungszentrum Dresden-Rossendorf

Future FEL Projects

	Frequen cy (MHz)	Energy (GeV)	Current (mA)		Emittance (mm mrad)	Wavelength	Туре
European XFEL Germany	1300	20	1-1 Being Built			X ray	SASE-FEL
4GLS UK	1300 (?)	0.6	100		2 @ 1 nC	VUV, Soft X ray	ERL, FEL
BESSY FEL/STARS Germany	1300	2.3	0.075	(1.5 (slice) ⊉ 2.5 nC/1 nC	VUV, Soft X ray	FEL
Arc-en-Ciel, France	1300	3	1-100		1.2 @ 1 nC	VUV, Soft X ray	ERL, FEL
Wisconsin FEL, USA	1300	2.2	1		<1 @ 0.2 pC	VUV, Soft X ray	FEL
FLS, LBNL USA	1500 (1300?)	2.5	?		?	VUV, X ray	FEL
POLFEL Poland	1300	0.6	White paper		UV	SASE-FEL	

VUV-Soft X-ray FELs: The "egg-laying full-milk woolly sows"

What do these FELs have in common? The are designed to do everything!

- Many users
- Resonable cost
- Cover UV to X ray range
- Independent control of wavelength
- Independent control of pulse duration, polarization
- Reproducible spectra, pulse profile etc...
- Ultra-short fs pulses, pump-probe capabilities etc.
- High average flux \rightarrow CW Linac

Most of the proposals use this layout

Seeded System + Var. Gap undulator

University of Wisconsin FEL

Master laser oscillator

Fiber link synchronization

J. Knobloch, SRF 2007

- Technical design report completed in 2004
- Evaluated by the German Science Council 2006
 - Recommendation: Realize BESSY FEL under condition that cascaded HGHG be demonstrated
- **2006:** Development of an HGHG demonstrator (STARS)

FEL Schemes

- For UV/X ray lasers cannot use "optical cavity"
- → Seed machines and use relatively long undulators for single-pass amplification
- Seed lasers at the desired wavelength do not exist
 - → must "upconvert"

High-Gain-Harmonic Generation (HGHG)

High-Brilliance electron beam (Emittance < 2 μm) Very short pulse seed laser (< 100 fs), e.g. Ti:Sa or HHG Laser

External seed, ω_0 overlaps the bunch and modulates the energy Chicane converts the energy modulation into a spatial bunching Modulated part of the bunch radiates coherently at a harmonic of the seed laser Limited to about $n \le 5$.

Key advantage of seeding: Output-pulse properties determined by seed laser not the electron bunch!

- \rightarrow Spectrum and pulse shape is reproducible (not so with SASE)
- \rightarrow Each beamline can be seeded differently = Flexibility!

But seeding is challenging!

ESSY

- Very precise beam timing (and position) control is needed, because of chirped beam (< 100fs)
- Beam "quality" must be constant along the bunch.
 → FEL Output critically depends on the performance of the SRF linac
- Need a low emittance injector
- Need third harmonic cavities to linearize RF
- Need very precise RF controls of the cavities
 - Order 0.02 deg, 0.02%
- Need very precise timing distribution system

Linac for VUV-Soft X-ray FELs

J. Bisognano, PAC07

BXD, BESSY, INDES, YJLMABJ Stolay b Bratian U. Lodz, Stanford ... 16

All proposals discussed here rely on existing SRF technology

- Cost: New development prohibitively expensive
- Experience: Existing technology has already proven its worth

ESSY

Main Linac

CW operation issues for TESLA technology

TESLA technology: Designed for high-power pulsed operation

Certain changes are required for CW operation

Cryogenics

- CW loads!! (4 kW cryoplants)
- Bath temperature
- LHe distribution in module/linac
- Pressure stability

Input couplers

- Adjustibility?
- Average-power (SW) capability

RF Control

- Exacting amplitude & phase control
- Flexibility and programmability

RF Sources

- Efficient
- Low cost
- Reliable
- Typically in the 20 kW CW range

Cavity tuner

- Reliable
- Design to minimize microphonics
- Active microphonic compensation

- Cavities
 - Operating field
 - Maximum quality factor? Improve magnetic shielding?
 - HOM Dampers quenches during CW operation

CW SRF R&D @ BESSY

- HoBiCaT Facility
- Testing of 2 fully equipped TESLA cavities
- 80 W @ 1.8 K cryogenics
- IOT + klystron transmitters for RF source development

Power dissipation in CW TESLA cavities

Because of CW operation and size of cryogenic installation

• Highest quality factors are critical, not highest gradient

Power extraction from TESLA cavities

- Large dynamic losses must be extracted from the helium tank
- Theory predicts a "boiling" limit in the chimney of 1.5 W/cm²
- Measurements confirm this with TESLA cavities:
 - 20 MV/m operation barely possible
- Modified the chimney to accomodate larger losses

Heating at the HOM pickup

- Reported at last SRF WS:
- HOM pickups problemematic for CW
- Pickup "sees" small part of accelerating field
 →Tip heats up a little (<< 1 W)
- But: Cooling of tip is only via the ceramic feedthrough →Thermal bottleneck can cause thermal runaway
- Solution—improve cooling of inner conductor with sapphire

3rd harmonic cavities

J. Knobloch, SRF 2007

Thank you to all the people who supplied information

- George Neil, JLAB
- Joe Preble, JLAB
- Marie-Emanuelle Couprie, Soleil
- Matthias Liepe, Cornell
- John Byrd, LBNL
- P. Michel, FZ Dresden-Rossendorf
- J. Teichert, FZ Dresden-Rossendorf
- Joseph Bisognano, U. Wisconsin
- Nobuyuki Nishimori, JAEA
- Ralf Eichhorn, TU-Darmstadt

- Test done at accelerator environment (MIT Bates Laboratory)
 - Locked EDFL to Bates master oscillator
 - Transmitted pulses through 400 meters fiber link
 - Close loop on fiber length feedback (12-fs in-loop jitter [0.1Hz,5kHz])

A. Winter et al., Paper FROA002, FEL 2005.

- Test done at the installed fiber underground (NIST/JILA)
 - Transmitted pulse train via a 7-km fiber link between NIST and JILA
 - 19-fs relative jitter between two locations [1 Hz, 46.5MHz]

D. Hudson et al, OL **31**, 1951 (2006).

For cost-optimization, use recirculating linac

- \rightarrow Impacts the linac cavities
- \rightarrow Consider BBU
- \rightarrow Consider HOMs
- Develop Arc-en-Ciel in Stages

Future Light Source at LBNL

• Political issues got in the way

John Byrd, LEBINL, 2004

Arc-en-Ciel Project

- For cost-optimization, use recirculating linac + ERL option (100 mA)
 →Consider HOMs
 →Consider BBU
 Significant impact on the SRF system
- No significant development of the linac/SRF so far
 No clear signals on funding/time line

POLFEL

CW Injector

- Development of CW capable low emittance injectors a high priority
- SRF System appears most promising at present
- Rossendorf system in the most advanced stage
- But other systems also being developed
- Even DC systems may be possible, especially for bunch charge and high-rep rate

Components of VUV-Soft X-ray FELs

ESSY

B

Seeded high-gain harmonic generation

- For UV/X ray lasers cannot use "optical cavity"
- → Seed machines and use relatively long undulators for single-pass amplification
- Seed lasers at the desired wavelength do not exist
 - → must "upconvert"

High-Gain-Harmonic Generation (HGHG)

High-Brilliance electron beam (Emittance < 2 μm) Very short pulse seed laser (< 100 fs), e.g. Ti:Sa or HHG Laser

External seed, ω_0 overlaps the bunch and modulates the energy Chicane converts the energy modulation into a spatial bunching Modulated part of the bunch radiates coherently at a harmonic of the seed laser Limited to about $n \le 5$.

Developed by L.-H. Yu et al, Brookhaven

- **To reach even shorter wavelengths, can cascade HGHG stages**
- Include an additional delay between stages to select a new "fresh" part of the bunch for subsequent stages
- E.g., to reach 1 nm need about 4 stages

Seeding

Key advantage of seeding: Output-pulse properties determined by seed laser not the electron bunch!

- →Spectrum and pulse shape is reproducible (not so with SASE)
- \rightarrow Each beamline can be seeded differently = Flexibility!

But seeding is challenging!

- Very precise beam timing (and position) control is needed, because of chirped beam (< 100fs)
- Beam "quality" must be constant along the bunch.
- Need third harmonic cavities to linearize RF
- Need very precise RF controls of the cavities
 Order 0.02 deg, 0.02%
- \rightarrow Need very precise timing distribution system
- → FEL Output critically depends on the performance of the SRF linac

Cornell University Laboratory for Elementary-Particle Physics

750 kV Gun

August 3, 2007

B. Dunham, August 3, 2007