

ERLP and 4GLS at Daresbury

Peter McIntosh STFC Daresbury Laboratory SRF2007, Beijing 15th – 19th October 2007

Accelerator Science and Technology Centre

Daresbury Laboratory

Accelerator Science and Technology Centre

Overview

- ERLP Overview
 - Construction Status
 - Commissioning Status
 - RF System
 - SRF Module Commissioning
 - Status and Plans
- 4GLS Overview
 - RF System Specifications
 - 4GLS SRF Module R&D
- Conclusions

Science & Technology Facilities Council

ASTeC

Technical Priorities for the ERL Prototype

- Operate a superconducting linac.
- Produce and maintain bright electron bunches from a photoinjector.
- Produce short electron bunches from a compressor.
- Demonstrate energy recovery.
- Demonstrate energy recovery (with an insertion device that significantly disrupts the electron beam).
- Have an FEL activity that is suitable for the synchronisation needs.
- Produce simultaneous photon pulses from a laser and a photon source of the ERL Prototype that are synchronised at or below the 1 ps level.

The ERLP Complex

Photoinjector laser operating since April '06.

Science & Technology Facilities Council

ASTeC

- Both superconducting modules installed (July 06).
- Gun installed with a dedicated gun diagnostic beamline (Aug 06).
- First beam achieved from photocathode (Aug 06).
- Beam transport system installed and under vacuum (Feb 07).
- Cryosystem installed and used to cool accelerating modules down to 2K (May 07).
- SRF modules validated to high power (Sept 07).

Accelerator installation

Gun Assembly

- JLab design GaAs cathode.
- 500 kV DC supply.
- Transverse emittance ~3 mm mrad.
- Power supply commissioned '05.
- Ceramic delivered March '06.
- Spare ceramic delivered Nov '06.

Ceramic, Cathode Ball and Gun

Science & Technology Facilities Council

ASTeC

Gun Commissioning Status

Electron gun operated July and August '06.

- First beam from the gun recorded at 01:08 on Wednesday 16th August 06 with the gun operating at 250 kV Encouraging results obtained.
- Gun unable to support high voltage following cathode re-caesiation at the end of Aug 06.
- Gun was rebaked and still exhibited similar breakdown.
- Gun stripped down and cleaned.
- Electron gun reassembled operating at 350 kV in Jan 07.
- Limited by field emission to lower volts.
- Gun bake temperature increased to 250 C.
- Cathode change after mechanical damage to flap, operation @ 350 keV & 250 keV.
- Diagnostic, buncher and kicker commissioned at low charge.
- Cathode lifetime very poor, halo problems some field emission from flap during conditioning.
- Changed cathode, "solved" DC ion current problem, tightened handling methods, changed vacuum criteria, increased uniformity of bake, changed to NF3.
- Gun ceramic braze failure Aug 07.
- Gun bake temperature reduced to 230 C.
- Spare ceramic installed and baking right now.

Accelerator Science and Technology Centre

First Beam!

01:08 AM on Wednesday 16th August 06

ASTeC

Performance Achieved To Date

- Beam energy
 - 350 keV (spec value) ✓
- Bunch charge
 - 22 pC (ultimate target 80 pC)
- Quantum efficiency
 - measured in the gun 1.2 %,
 - measured in the lab 3.5 % (ultimate target ~ up to 10 %)
- Bunch train length
 - 6 ps pulse @ 100 µs (spec value) ✓
- Train repetition rate
 - 20 Hz (spec value) ✓

SRF Modules

- 2 x Stanford/Rossendorf cryomodules
 - 1 Booster and 1 Main LINAC.
- Fabricated by ACCEL.
- Booster module:
 - 4 MV/m gradient.
 - 52 kW RF power.
- Main LINAC module:
 - 13.5 MV/m gradient.
 - 13 kW RF power.

- JLab HOM coupler feedthrough design adopted for the LINAC module:
 - Sapphire loaded ceramic.
 - Higher power handling capability.

Science & Technology Facilities Council ASTEC

Beam Voltage (kV)

Bandwidth (MHz)

Efficiency (%)

Accelerator Science and Technology Centre

34

4.5

63.8

34

>5

60.4

25

>4

>60

RF System Specifications

	Booster		ERL Linac		
	Cav1	Cav2	Cav1	Cav2	
Gradient (MV/m)	5	3	13.5	13.5	
Q _o	5 x 10 ¹⁰				
Q _e	3 x 10 ⁶	3 x 10 ⁶	7 x 10 ⁶	7 x 10 ⁶	
Power (kW)	32	20	6.7	6.7	
Power Source	2 x e2v	CPI	e2v	Thales	

0.1ms bunch trains @ 20 Hz repetition rate

Science & Technology Facilities Council

ASTeC

Cavity Vertical Tests at

DESY Cavity ACCEL3 Test: 1 Datum: 19.sep.05 [goe] Cavity: ACCEL2 Test: 4 Datum: 05.dec.05 50E+10-5.0E+10 . . 1.0E+10-• • • 1.0E+10-**Booster Cavity1** Linac Cavity1 5.0E+9-10E+9-5.0 0.0 10.0 15.0 20.0 00 50 10.0 15.0 20.0 Q/E \$ 8 (18.8MV/m pi / 8 Curve Q/E 1 (17.8MV/m pi / 9 Curve Close Close Qo(Emin)= 1.15E+10 Emax(Qo>5e9)= 18.85 MV/m fo(Emin)= 1300.41 MHz Qo(Emin)= 1.65E+10 Emax(Qo>5e9)= 17.10 MV/m fo(Emin)= 1300.36 MHz Qo(Emax)= 6.29E+9 Emax= 18.85 MV/m Temp(avg)= 1.99 Qo(Emax)= 4.08E+9 K Emax= 17.82 MV/m Temp(avg)= 2.00 Qo(max)= 1.67E+10 pi mode limitation: BD Qo(max)= 1.80E+10 BD pi mode limitation: TM010 x rays start from 15 MV/m, no MP x rays start at 9.8 MV/m, LPP and fast MP from 15 MV/m TM010 Cavity: ACCEL1 Test: 1 Datum: 19.jul.05 [goe] Cavity: ACCEL4 Test: 1 Datum: 06.dec.05 [goe] 1.0E+11 5.0E+10 1.0E+10-1.0E+10-**Booster Cavity2** Linac Cavity2 1.0E+9-1.0E+9-5.0 10.0 0.0 15.0 20.0 25.0 50 10.0 15.0 20.0 25.0 0.0 Q/E 11 (22.4 MV/m pi / 11 Curve Q/E \$ 9 (20.4MV/m pi / 9 Curve Close || v t a.aa (m) Close Qo(Emin)= 1.42E+10 Emax(Qo>5e9)= 20.84 MV/m fo(Emin)= 1300.17 MHz Qo(Emin)= 1.29E+10 Emax(Qo>5e9)= 20.42 MV/m fo(Emin)= 1300.42 MHz Qo(Emax)= 3.47E+9 Emax= 22.42 MV/m Temp(avg)= 2.02 K Qo(Emax)= 7.05E+9 Emax= 20.42 MV/m 2.00 K Temp(avg)= Qo(max)= 1.59E+10 PWR pi mode limitation: Qo(max)= 1.71E+10 pi mode limitation: BD TM010 after MM, x rays start at 13.4 MV/m TM010 new Calibpoint3, x rays start at 14.0 MV/m

> Jul – Dec 2005 Accelerator Science and Technology Centre

High Power Tests

Vertical Tests at DESY (Jul – Dec 2005)

	Booster		Linac	
	Cavity 1	Cavity 2	Cavity 1	Cavity 2
E _{acc} (MV/m)	18.9	20.8	17.1	20.4
Q _o	5 x 10 ⁹			

Module Acceptance Tests at Daresbury (May – Sept 2007)

Max E _{acc} (MV/m)	10.8	13.5	16.4	12.8
Q	3.5 x 10 ⁹ @	1.3 x 10 ⁹ @	1.9 x 10 ⁹ @	7.0 x 10 ⁹ @
-0	8.2 MV/m	11 MV/m	14.8 MV/m	9.8 MV/m
Limitation	FE	FE	RF Power	FE
LIIIIIIalion	Quench	Quench		Quench
	0			

See Poster: TUP63

Science & Technology Facilities Council

ASTeC

Cavity Processing (Linac – Cav1)

Accelerator Science and Technology Centre

Coupler Heating (Linac – Cav2)

Stuck Tuner (Linac – Cav1)

Worn drive mechanism

Cryosystem Operation

- Partial system procured from Linde.
- 4 K commissioning completed May 06.
- SRF Module delivery April and July 06.
- Problems with excessive system heat leaks and heater failure.
- Cryo specification 118 W at 2 K with 1 mbar stability.
- Actually achieved 118 W at 2 K with \pm 0.03 mbar stability in May 07.
- Measured 5 W static load for both modules (i.e. ~2.5 W each)
 - Specification < 15 W per module!
- System has operated successfully at 1.8 K needs optimising.

Science & Technology Facilities Council

ERLP Plans and Schedule

2007:

ASTeC

- Gun & diagnostics line studies finished
- Booster repositioned
- Beam through booster
- 2008:
 - Beam through the linac
 - Beam through booster, linac and arcs
 - Energy recovery demonstrated
- Longer term:
 - Exploit THz radiation from compressor
 - Compton backscatter phase 1
 - Install wiggler
 - Energy recovery from FEL-disrupted beam
 - Produce output from the FEL

end Nov mid Dec mid Jan

mid Feb end Feb end Mar

The 4GLS Facility

ERLP is the educational and technical demonstrator for 4GLS.

The Energy Recovery Process

- Injcted beam accelerated normally and arrives back at the Main Linac 180° out of phase.
- Beam then decelerated and energy recovered and simultaneously used to accelerate more injected beam.
- For operation in ER mode, net beam loading is zero.
- Generator power (P_g) defined by peak microphonics (△𝔕) sensitivity of cryomodules.
- For 4GLS modules have assumed 25 Hz as a conservative expectation.

Microphonics Sensitivity

Accelerator Science and Technology Centre

4GLS RF Requirements

4GLS CDR completed April 2006. 4GLS Linacs:

- 10 MeV HACL Linac
- 210 MeV XUV-FEL Injector
- 540 MeV ERL Linac
- 60 MeV IR-FEL Linac

Mods from CDR:

- XUV-FEL 3rd Harmonic Linac removed
- ERL modules reduced from 6 to 5
- XUV-FEL booster Linac removed
- XUV-FEL injector energy increased
- ERL Linac energy reduced 4GLS TDR expected April 2008.

	HACL Injector	XUV-FEL Injector	ERL Linac	IR-FEL	<i>u8</i>
Number of Cells/Cavity	2	7	7	7	desi
Number of Cavities/Module	5	8	8	8	nac
Number of Modules	2	2	5	1	e Lin
Energy Gain (MeV)	10	210	540	60	ame
E _{acc} (MV/m)	4.3	16.3	16.7	9.3	
Q _e	4.7 x 10 ⁴	1.3 x 10 ⁷	2.6 x 10 ⁷	1.3 x 10 ⁷	ogy Facilities Council
Total RF Rewer/Cavity (kW)	100	16.5	12.8*	19.5	C

4GLS Cryomodule R&D Collaboration

- 5 collaborating institutes:
 - ASTeC (UK):
 - Bob Bate (Module cryogenics, assembly)
 - Carl Beard (Cavity, coupler)
- Mike Cordwell (Integration, coupler, tuner)
 Mike Dykes (Cavity, tuner, coupler, integration)
 - Peter McIntosh (ASTeC overview)
 - Shrikant Pattalwar (Module cryogenics)
 - John Strachan (Integration, tuner, project management)
 - Emma Wooldridge (Cavity)
 - Cornell University (USA):
 - Sergey Belomestnykh (Cavity, tuner, coupler, absorber, integrat
 - Matthais Liepe (Cavity, tuner, coupler, absorber, integration)
 - Hasan Padamsee (Cornell overview)

- Stanford University (USA):
 - Todd Smith (Stanford overview)
 - Takuji Kimura (Tuner, coupler, assembly)
- Lawrence Berkeley Laboratory (USA):
 - John Corlett (LBNL overview)
 - Derun Li (Cavity)
 - Steve Lidia (Cavity)

- FZD Rossendorf (Germany):
 - Frank Gabriel (Rossendorf Overview)
 - Andree Buechner (Coupler, tuner, integration)

See Poster: WEP33

Cryomodule Goals

- Design requirements:
 - $E_{acc} > 20 \text{ MV/m} @ Q_o > 10^{10}$
 - $Q_{ext} \approx 1 \times 10^7$ to 1×10^8
 - Couplers capable of up to 25 kW CW SW
 - Large HOM damping capability
- Issues to be resolved include:
 - Effective HOM Damping (up to 200W/cavity)
 - Microphonics sensitivity (< 25 Hz peak)
 - Fast Tuning (microphonics compensation)
 - Input Power Delivery (25 kW CW SW)
 - Cryomodule Design (< 2.5 W static loss)
- A 2-cavity cryomodule to be validated with beam:
 - On ERLP in 2009
 - On Cornell ERL injector in 2010

Collaborative Development

- Stanford has provided a 2-cavity cryomodule (incl. some internals).
- Cornell will provide and modify the 2 x 7-cell cavities.
- DL will provide the HOM absorbers and couplers.
- FZD have provided the 3D cryomodule drawings.
- LBNL have provided cavity design expertise.

Science & Technology Facilities Council

ASTeC

• Engineering and design effort split across the 5 institutes.

Input Coupler Options

TTF III:

- Adjustable coupling (16 mm)
- Long (minor mods needed)
- 5 kW CW SW (BESSY)

Cornell Injector:

- Adjustable coupling (16 mm)
- Longer (modest mods needed)
- Up to 50 kW CW SW (Cornell)

Chosen solution

Stanford/Rossendorf:

- Fixed coupling
- Compact (no mods needed)
- 10 kW CW SW (Rossendorf)

Accelerator Science and Technology Centre

Cavity Optimisation

Accelerator Science and Technology Centre

Cornell ERL Injector Coupler Modifications

- Cold section of the Cornell injector coupler too long to load into the module.
- Removed 80 K intercept ring and two bellows convolutions.
- Reduced the 2 K to 5 K transition tube.
- At 25 kW SW, mods should not affect performance.

Parameter	Original	Modified	
Max Power (kW)	50 TW	20 SW	
Antenna Stroke (mm)	>15	<15	
Heat Leak to 2K (W)	0.23	0.13	
Heat Leak to 5K (W) Shortened the c	old sec	tion by	
Heat Leak to 80K (W). Still Conflicts Wi	th LN2	skeleton	۱.

LN2 Skeleton Modifications

Science & Technology Facilities Council

ASTeC

- Coupler cold section still too long to insert cavity string through LN2 skeleton.
- Sectioned 3 x rings to allow for insertion from one side only.
- Both central rings pushed further apart to accommodate larger coupler.
- Modifications are not anticipated to cause excessive differential 80 K cooling.

Cornell HOM Absorbers

Science & Technology Facilities Council

Power per load (W)	Up to 100 (max 200)
HOM frequency range (GHz)	1.4 to 100
Operating temperature (K)	80
Coolant	GHe
RF absorbing tiles	TT2, Co2Z, Ceralloy

HOM Absorber Integration

- Central HOM absorber surrounded by rigid support cage.
- Restricts longitudinal movement of both input couplers.
- Absorber thermally isolated by thin titanium support rods/cables.

- End HOM absorbers uses similar rod/cable support.
- Support ring mounted from cavity LHe vessel at 2 K.

Tuner Options

- Blade tuner:
 - Compact
 - Good sensitivity
- Lever tuner:
 - Large tuning range
- Both incorporate piezo actuators.
- Blade tuner extremely difficult to incorporate into existing module:
 - substantial modifications required!

	Lever	Blade	
Tuning range (mm)	1.9	1.0	
Tuning range (kHz)	820	440	
Sensitivity (Hz/step)	0.74	0.38	
$\Delta f. warm/cold (MHz)$	2.3	2.3	
ΔF (4.2K/2K) (kHz)	30	70	ouncil
	AST e	C	

Science & Technology Facilities Council

ASTeC

- Enlarged to accommodate larger 106 mm beam pipe diameter.
- Piezo cartridge modified to be precompressed so as to not rely on cavity tuning for compression.
- Low voltage piezo stack to be replaced by high voltage stack to improve stiffness.

Cryomodule Evolution (External)

Modified

Cryomodule Evolution (Internal)

Accelerator Science and Technology Centre

Schedule

- ACCEL HOM absorbers delivered
- Module internal drawings complete
- Saclay II tuners delivered
- Module centre section modified
- CPI Couplers delivered
- Tooling and fixtures fabricated
- All module components available
- Module assembled
- Installation on ERLP
- Installation on Cornell ERL Injector

Dec 2007 Dec 2007 Feb 2008 Feb 2008 Mar 2008 Mar 2008 Jul 2008 Dec 2008 Early 2009 Early 2010

Cryomodule Assembly

Accelerator Science and Technology Centre

Conclusions

- ERLP and 4GLS are taking advantage of the vast amount of R&D already performed as part of the TESLA Technology Collaboration (TTC) at 1.3 GHz.
- ERLP is an educational R&D project giving DL staff the ability to demonstrate competencies in SRF, XUHV and FEL technologies.
- ERLP will be the workhorse to demonstrate viable system solutions for 4GLS.
 - Struggled this last year with repeated gun vacuum problems.
 - Commissioning right now!
- 4GLS being designed and technical solutions identified:
 - CDR completed April 2006.
 - TDR expected April 2008.
- SRF module development well underway to prove required 4GLS performance in 2009-2010.

