

XFEL: Plans for 101 Accelerator Modules

Lutz Lilje, DESY for the XFEL team

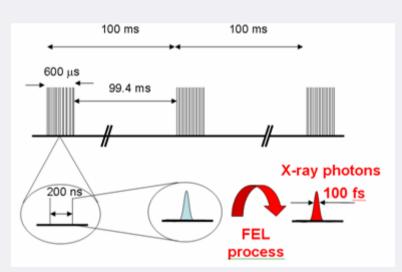
Lutz Lilje, DESY SRF2007, 15 October 2007

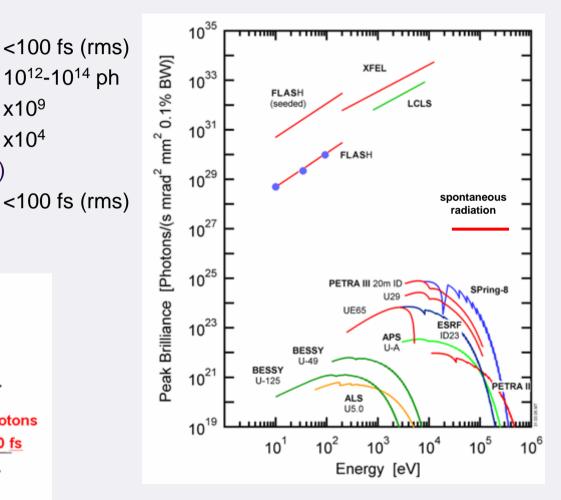
Outline

- Overview
- XFEL Project Current status
 - Project approval
 - Schedule
- Test facilities: Existing and planned
 - FLASH
 - Free-Electron-Laser in Hamburg
 - Tunnel Mockup
 - CMTB
 - Cryomodule Test Bench
 - AMTF
 - Accelerator Module Test Facility
- Industrialization examples
 - Cavity
 - Coupler
 - Module
- Distribution of Workload
 - Common In-Kind Proposal

Properties of XFEL radiation

10¹²-10¹⁴ ph

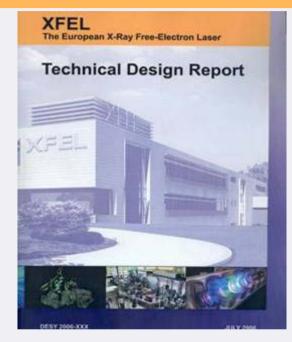

x10⁴


X-ray FEL radiation (0.2 - 14.4 keV)

- ultrashort pulse duration <100 fs (rms)
- extreme pulse intensities
- coherent radiation x10⁹
- average brilliance

Spontaneous radiation (20-100 keV)

- ultrashort pulse duration
- high brilliance



XFEL Documentation

- Technical Design Report
 - Report by over 300 Authors from 17 countries and 71 institutions
 - Has been reviewed internationally
 - Is available at:
 - http://xfel.desy.de/tdr/tdr/index_eng.html
 - Completed July 2006
 - Minor edits: Final version available now
- In parallel finished the 'Planfeststellungsverfahren'
 - Legal procedure to get plan approval
 - Includes ecological impact studies etc.
 - July 2006: Plan approval announced by authority in charge

HELMHOLTZ

GEMEINSCHAF1

□Lutz Lilje, DESY SRF2007, 15 October 2007

XFEL site in Hamburg/Schenefeld


□Lutz Lilje, DESY SRF2007, 15 October 2007

HELMHOLTZ | gemeinschaft

... after construction (computer simulation)

□Lutz Lilje, DESY SRF2007, 15 October 2007

HELMHOLTZ | gemeinschaft

XFEL International Project Organization

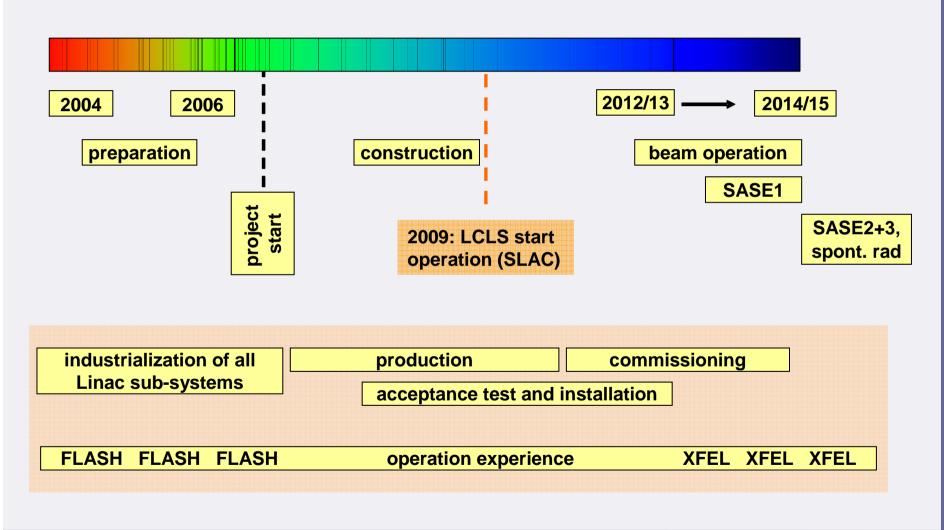
issues STI (chair: F. Sette, ESRF)

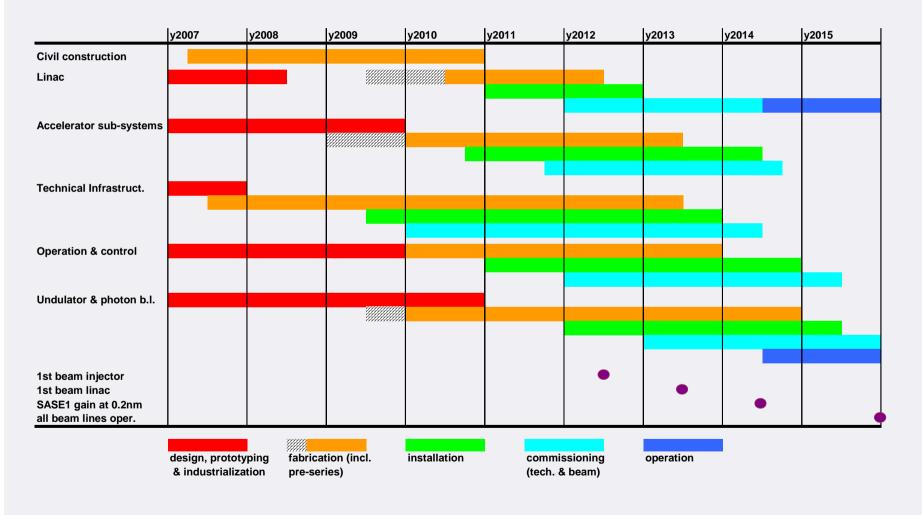
WG on Administrative and Funding issues AFI (chair: H.F. Wagner, Germany)

Bi-lateral negotiations between Germany and signature countries on funding contributions are ongoing

XFEL Project start

- On 5th of June 2007
 - Official start of the project


- On 6th of June
 - Start of tendering process for civil contruction


XFEL Principle Schedule

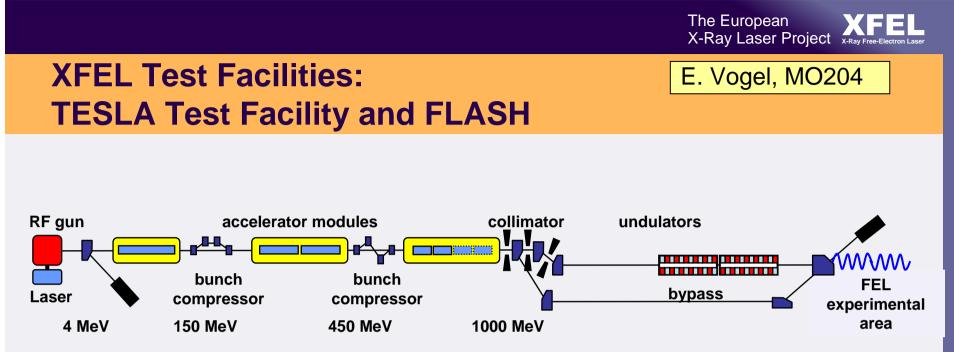
□Lutz Lilje, DESY SRF2007, 15 October 2007

XFEL Schedule

GEMEINSCHAFT

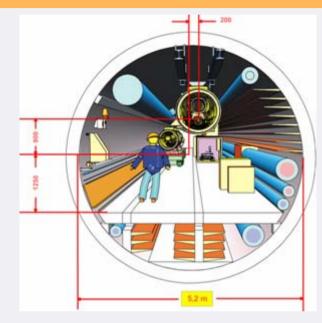
Tentative XFEL Schedule (more details)

	8	y2007	y2008	y2009	y2010	y2011	y2012	y2013	y2014	y2015
	9									
	10 Civil construction									
•	24									
	25 Linac (XTL)									
	26 27									
	27 20 and module heads from 1 and a string									
	28 acc.module tendering + pre-series 29 acc.module fabrication									
	31 XTL installation 32 Linac cool down & comm.									
r.	32 Unac cool down & comm. 33 XTL techn.commissioning									
	33 XTL techn.commissioning									
	34 commissioning with beam 35									
	36 Accelerator sub-systems (components	a								
	37 37 37 37	9								
	38									
	39									
	40									
	41 injector 42 bunch compressors									
	43 RF stations & LLRF									
	45 magnets 46 yacuum									
	46 Vacuum 47 beam dumps									
	47 beam dumps									
-	40 49 Technical infrastructure									
	50									
	51									
	52									
	53									
F I	55 60									
	61 Operations & control									
	62									
	63									
	65									
	65									
	66									
	67 Undulator & photon beamlines (XTDs	3								
	co									
	68 69									
	0.9									


XFEL Test facilities at DESY: Existing and planned

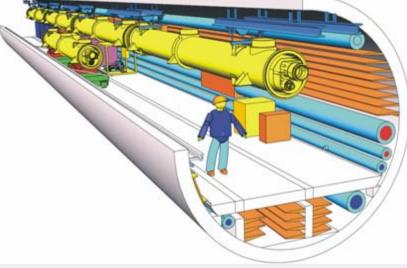
– FLASH

- Free-Electron-Laser in Hamburg
- Verify overall concept
- Tunnel Mockup
 - Verify installation concept
- CMTB
 - Cryomodule Test Bench
- AMTF
 - Accelerator Module Test Facility for series Production



- Pilot facility regarding practically all aspects (accelerator technology, beam physics, FEL process, user operation) of the XFEL
- Test bed for technical developments specifically required for the XFEL
- Injector development at PITZ, DESY-Zeuthen
- Recently: 1 GeV maximum energy and lasing at 6.5 nm!

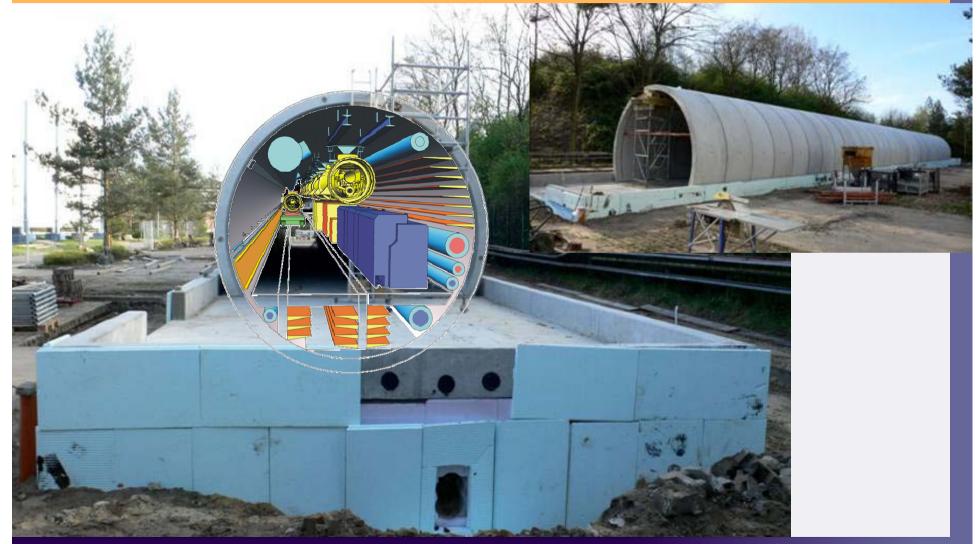
XFEL Tunnel




The **XFEL tunnel layout** was developed in several iterations.

A **mockup** is currently under construction.

Installation procedures are under study.



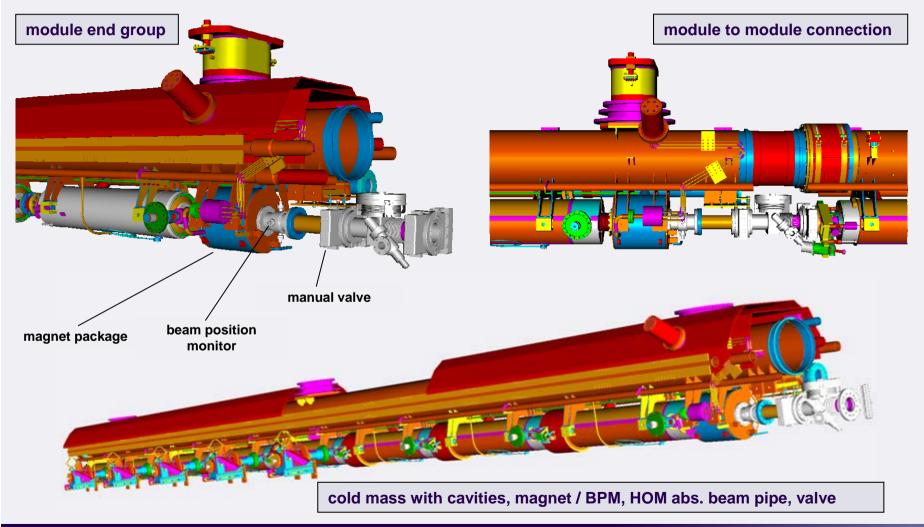
□Lutz Lilje, DESY SRF2007, 15 October 2007

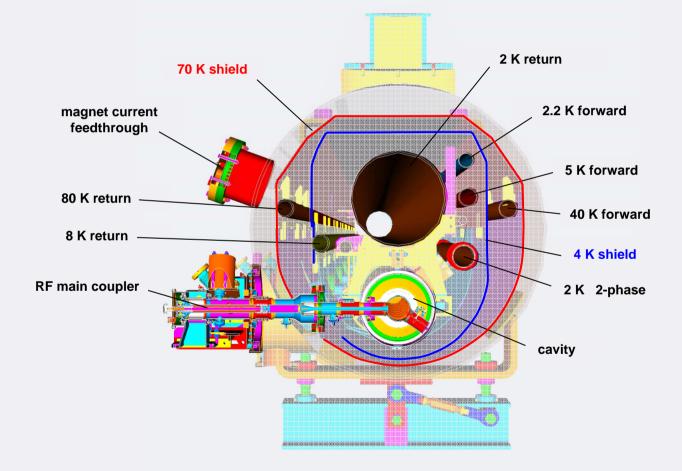
XFEL Test Facilities: Tunnel Mockup

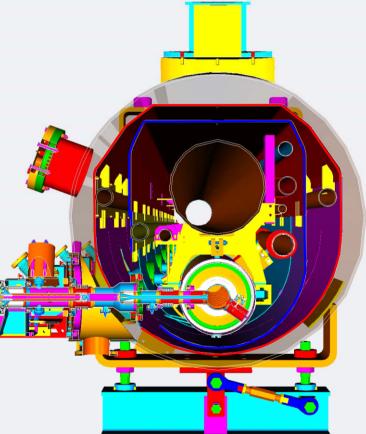
XFEL Test Facilities: Cryomodule test bench (CMTB)

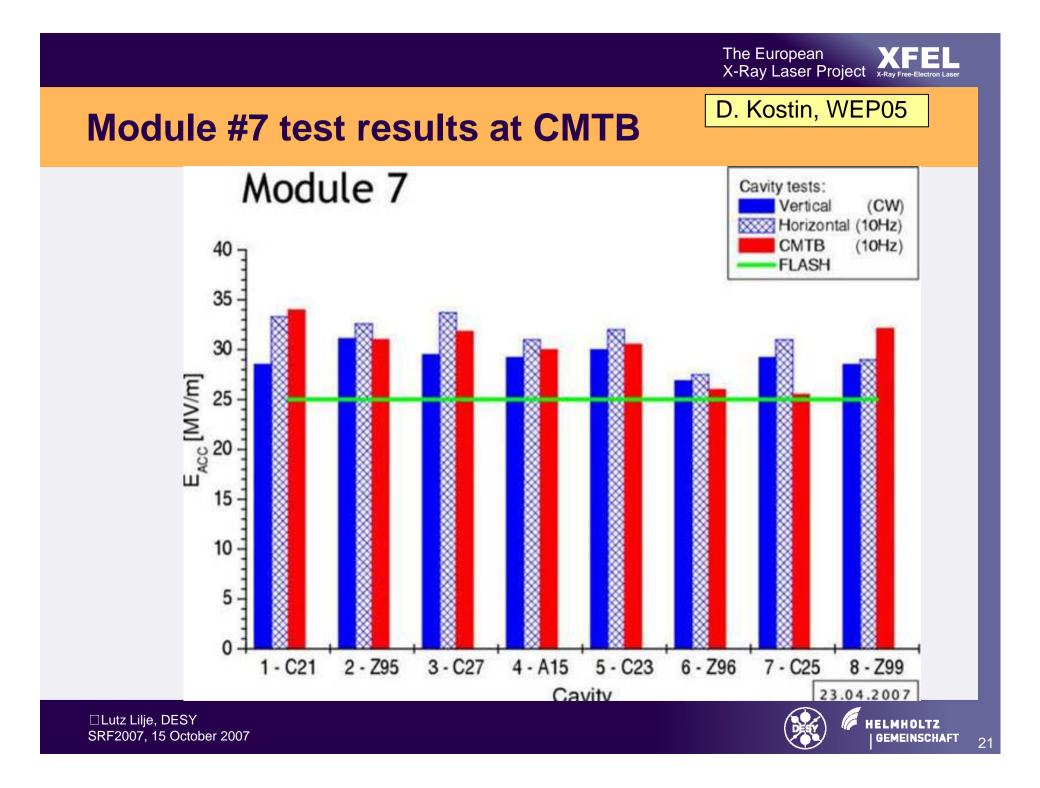
- CMTB permits test of modules (prototypes & pre-series) without the need to install them in the FLASH linac
 - Construction & commissioning completed autumn 2006
- Modul #6, 7, 5 (FLASH) tests completed
 - coupler processing,
 - cav performance,
 - cryo load,
 - cold-warm cycles,
 - piezo-compensation,
 - LLRF, ...
- Gain important experience for the later larger scale series test facility

The European


X-Ray Laser Project X-Ray Fre

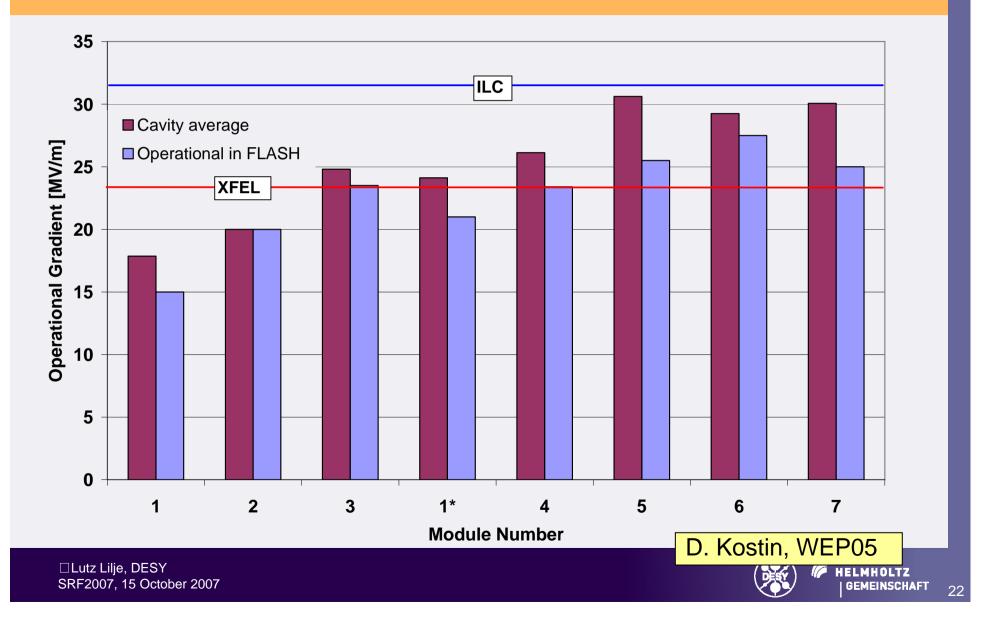

XFEL Accelerator Module (Cryomodule)


XFEL Accelerator Module (Cryomodule)

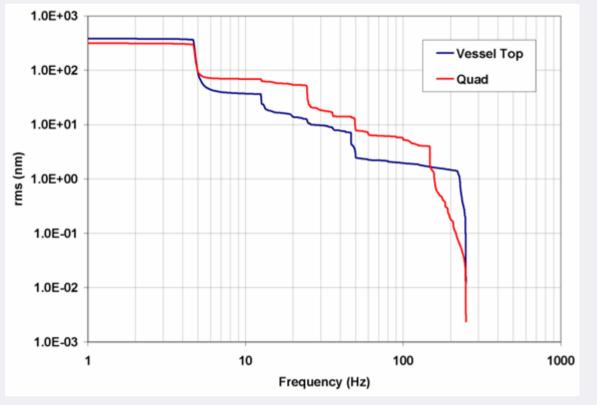


XFEL Accelerator Module (Cryomodule)

- The XFEL accelerator module is based on the 3rd cryomodule generation tested at the TESLA Test Facility and designed by INFN.
- Already 10 cryomodules have been built and commissioned for the TTF Linac.
- Module 6 and Module 7 (repl. ACC3) were just recently installed at TTF/FLASH.
- Additional cryostats under construction:
 - Module 8
 - most likely ACC7
 - Module 9
 - FNAL ass. kit
 - Module 3**
 - spare ACC1, sched. 2008
 - 2-3 cryostats in 2008 with XFEL layout
 - Tendering process on-going



Performance of Accelerator Modules

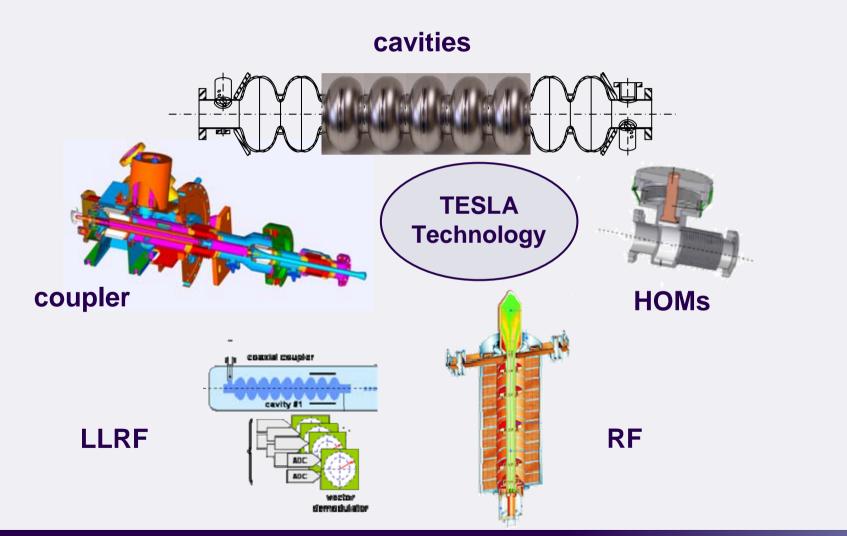


Vibration studies – stability within module

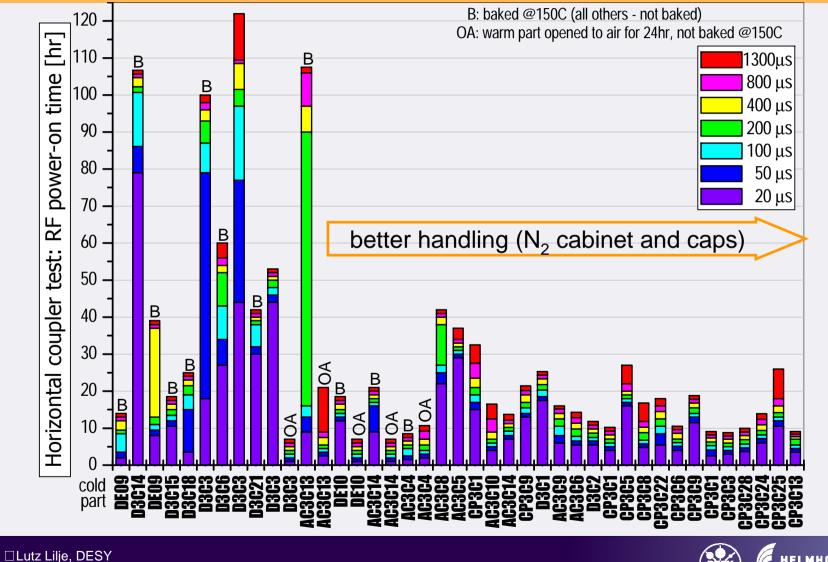
Work done within ILC/EUROTEV programme

 →Overall amplification of quad vibration vs. external vibration of module vessel is small

"Vibration Stability Studies of a Superconducting Accelerating Module at Room Temperature and at 4.5 K", R. Amerikas, A. Bertolini, LCWS07, DESY



□Lutz Lilje, DESY SRF2007, 15 October 2007


XFEL Accelerator Components

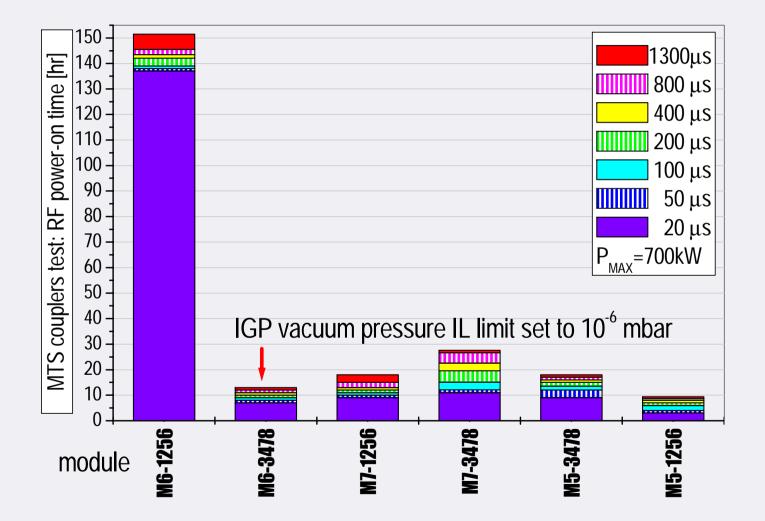
□Lutz Lilje, DESY SRF2007, 15 October 2007

Fast coupler processing (in CHECHIA)

SRF2007, 15 October 2007

The European

X-Ray Laser Project

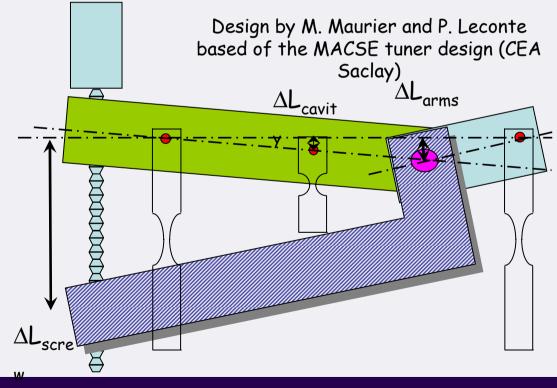

X-Ray Free-Electr

D. Kostin

D. Kostin

Fast coupler processing (on CMTB)

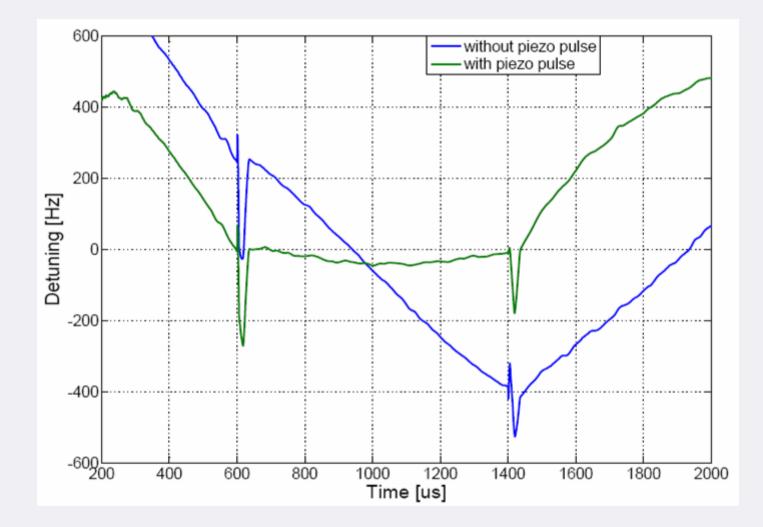
□Lutz Lilje, DESY SRF2007, 15 October 2007



HELMHOLTZ | GEMEINSCHAFT

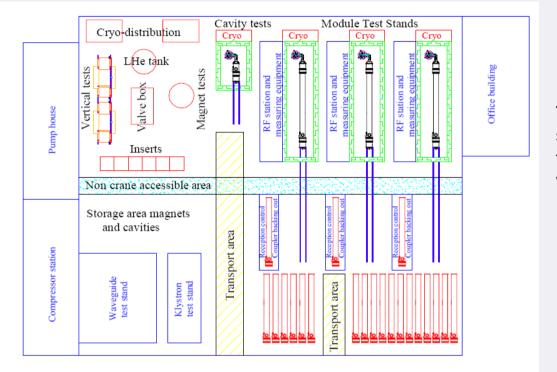
XFEL Tuner

- Current design in use at FLASH
 - Design by CEA
 - Fast piezo detuning introduced not from beginning
 - Is the solution for XFEL so far



XFEL Tuner: Compensation at 35 MV/m

□Lutz Lilje, DESY SRF2007, 15 October 2007



XFEL Accelerator Modules: Delivery and Testing

- Number of components
 - Injector
 - RF Gun + 1 single accelerator module
 - Main Linac
 - 25 units (4 acc. modules each)
 - Energy reach
 - (1) x 4 x 8 x 23.6 = 500 MeV
 - (2+1) x 4 x 8 x 23.6 = 1.5 + spare -> 2 GeV
 - (20+1) x 4 x 8 x 23.6 = 15.1 + spare -> 17.5 GeV
- Schedule for modules (tentatively)
 - Module installation from 9/2012 until 3/2013 at a rate of 1 unit / day
 - Commissioning and cooldown in summer, beam by end of 2013
 - all modules to be tested at AMTF between mid 2010 and end 2012
 - Sub-components
 - cold-mass delivery at a rate of 1/week; 1st cold-mass delivered Q3/2009
 - 1st cavity string components Q3/2009
 - 1st module spring 2010
 - i.e. all accelerator components ready to order end of 2008;
 - actual R&D status supports this

XFEL Test Facilities: Accelerator Module Test Facility

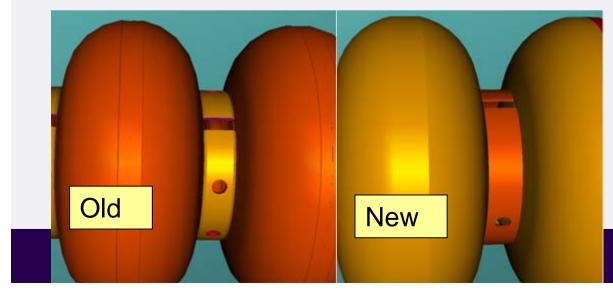
TDR version of the AMTF. After some iterations (costs, practicability) the final version to be built until 2009 will look slightly different.

- The XFEL requires an Accelerator Module Test of all 101 individual modules.
 - The test rate is 1 module/week corresponding to the envisaged assembly rate.
- In order to be most efficient, the vertical test of bunches of cavities is integrated.
- Other issues are waveguides and cold magnets.

XFEL Industrialization: Examples

- Cavity

- Re-design for simpler manufacturing
- Train EP process in industry
- Coupler
 - Study at LAL Orsay
- Module
 - Study on module assembly



Old

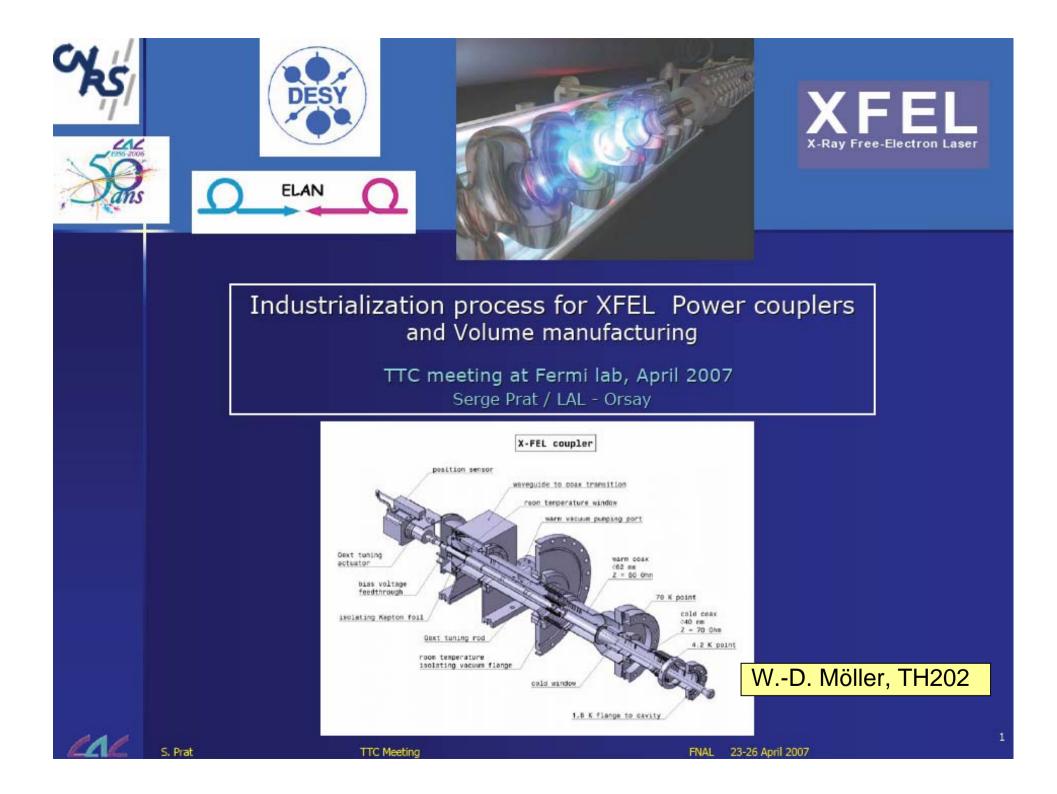
New

TTF Cavity Today and XFEL Cavity

- Only minor design changes to reduce cost/simplify manufacturing will be done e.g.
 - Removal of coupler port stiffener
 - Removal of 'pockets' short side
 - Removal of outside recess
 - Less holes in stiffener ring
 - Thinner stiffener ring
- Review tolerances
 - Loosen where possible e.g. stiffeners rings

XFEL Cavities

The XFEL will use 808 accelerating cavities (rapid start-up scenario)



There are at least two well established 'sources' for an **industrial cavity production** guaranteeing the required rate of 8 to 10 cavities per week over two years. **At the companies, new infrastructure is required** but the effort is well understood.

Cavity treatment will be done in industry. In order to prepare this, two companies will do the first electro-polishing of 15 9-cell cavities each in 2007.

The **quality check** will be done in terms of a vertical test on the XFEL/DESY site. The **tested cavities will be given to industry** for string/module assembly.

□Lutz Lilje, DESY SRF2007, 15 October 2007 Several Posters: A. Matheisen TUP30, A. Schmidt TUP28, N. Krupka TUP32, M. Schmökel TUP31, B.v.d. Horst, N. Steinhau-Kühl TUP33, D. Reschke TUP74 TUP77, P. Gall TUP02

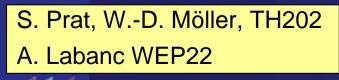
Some results

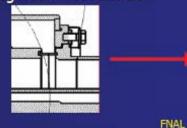
Functional analysis

- Small thermal emissivity coefficient → Polish the antenna (gain in radiative thermal power)
- Thermal model → Cu rings at 4K point can be attached on thicker tube instead of bellows, brazed or glued
- Big flange on vacuum vessel: 12 holes are enough instead of 24
- Change some materials in actuator for radiation resistance
- Choose PPS for connectors and Kapton for cable insulation
- Floating big flanges must be supported

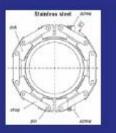
Design for manufacturability

- · Choose deformation techniques instead of machining: deep drawing, spinning, pull-out
- · Optimize the process for vacuum brazing by use of special tooling: adapt tolerances & thermal expansion
- Decrease number of parts and junctions:


Lean manufacturing


S. Prat

Use RF seals for better electrical contact at waveguide interface box


TTC Meeting

Use chain clamp instead of screws for assembly

Validation samples and tests

→ Manufacturing techniques:

- tube pull out for e- pickup and pumping ports
- deep drawing for conical part

\rightarrow TIG welding:

• Validate TIG welds from outside

→ Vacuum brazing:

- He leak test < 10⁻¹⁰ Pa m³/s
- pull tests on window assembly

\rightarrow Cu coating:

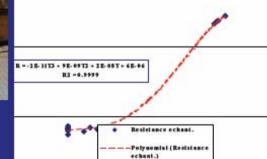
- adhesion test
- thickness uniformity measurements on bellows

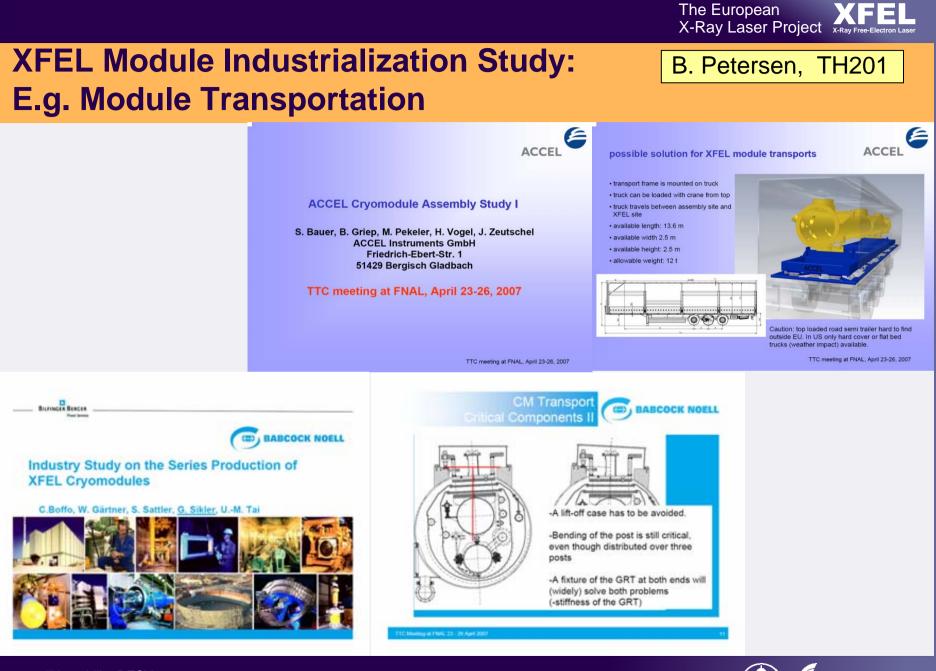
TTC Meeting

RRR measurements

\rightarrow TiN coating:

S. Prat

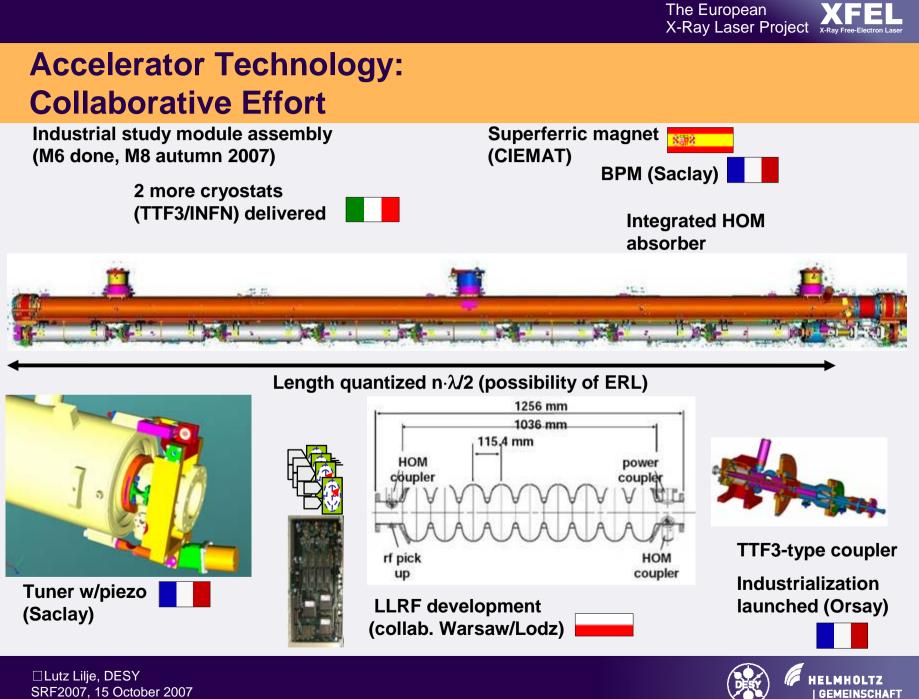

- layer thickness and stoichiometry
- + $\epsilon_{\rm R}$ and tand measurements on ceramic



OK if $\sigma_{\rm m}$ > 100 MPa

FNAL 23-26 April 2007

□Lutz Lilje, DESY SRF2007, 15 October 2007


Distribution of Workload

- Accelerator technology was and is a collaborative effort
 - Build on TESLA Collaboration
 - Some R&D support for from EU FP6 programs

 E.g. CARE, EUROFEL, EUROTeV
- Common In-Kind Proposal for XFEL cold linac by several labs

HELMHÖLTZ

GEMEINSCHAFT

In-kind Review Committee Meeting

Common in-kind proposal for the superconducting linac of the XFEL WP3 – WP9 and WP11

presented by Hans Weise / DESY

for

CEA Saclay CIEMAT DESY INFN IPJ Swierk LAL Orsay

Approach to minimize the project risk for the XFEL cold linac

- With the goal to define in-kind contributions to the superconducting linac of the XFEL, a series of meetings was organized with the major players in the field.
- All meeting participants contributed with key components during the R&D effort of the TESLA Collaboration, i.e. can be seen as experienced partners.
- There might be additional interest by '**new-comers**' in the SCRF community. At this moment in time, the already identified interest of China is seen as a promising option but requires qualification of the institutes in terms of producing first prototypes of e.g. cold masses (the cryogenic unit of an accelerator module).
- Depending on the success and its timeline, new partners could either join the soon starting activities in the different laboratories, or, if the step from the current rapid start-up scenario with 100 modules to the final stage (116 modules) can be made, take some responsibility for additional accelerator sections.

Laboratories involved and their fields of interest

The following laboratories were involved in the discussion of the cold linac and agreed on the delivery of a common proposal for the in-kind contributions. Besides clarification of a few still open questions, the final official in-kind proposal will also require approval of the individual funding agencies.

Laboratory	Country	Fields of interest
CIEMAT	Spain	cold magnets, power supplies
LAL Orsay	France	main RF input coupler
DAPNIA Saclay	France	accelerator modules, cavities, cold beam position monitors (BPM), cold frequency tuners, 3.9 GHz harmonic accelerator section
INFN Milano	Italy	accelerator modules, cavities
DESY	Germany	accelerator modules, cavities, cold beam position monitors (BPM), cold frequency tuners, cold vacuum system
IPJ Swierk	Poland	HOM

Summary

Accelerator Modules		Laboratory	Country	Invest	M€	FTE	FTE	/M€
Accelerator modules	WP - 3	CEA Saclay	France		60%			43%
		INFN	Italy		19%			29%
		DESY	Germany		21%			29%
	sum				100%			100%
Superconducting Cavities	WP - 4	INFN	Italy	//////	50%			34%
		DESY	Germany		50%			66%
	Sum Sum				100%			100%
		Received from WP-9						
Power Couplers	WP - 5	LAL Orsay	France		7396			52%
i ener couplete		DESY	Germany		27%			48%
		or						
		LAL Orsay	France	IIII A	99%			100%
		DESY	Germany		1%0			0%0
	sum.				100%			100%
HOM Coupler / Pick-up	WP - 6	IPJ Swierk	Poland		100%			100%
rien saspierri ner op	Sum Sum				100%			100%
Frequency Tuners	WP - 7	DESY	Germany		100%			100%
riequency runers	sum				100%			100%
Cold Vacuum	WP - 8	DESY	Germany		100%			100%
Cold vacuum	sum				100%			100%
Cavity String Assembly /	WP - 9	CEA Saclay	France		90%			51%
· · · · · · · · · · · · · · · · · · ·		DESY	Germany		10%			49%
Clean Room Quality		Transferred to WP-4						
Assurance	sum				100%			100%
Cold magnets	WP - 11	CIEMAT	Spain		56%			10%
Cold magnets		DESY	Germany		44%			90%
	sum				100%			100%

Summary and Conclusions

- XFEL Project has started
 - Official opening ceremony on 5th of July 2007
 - Started to set up In-Kind contributions
- Modules design is mature
 - Several successful tests on CMTB and in FLASH
 - E.g. Coupler Processing, thermal cycling, fast tuner performance
- Industrialization for large series ongoing
 - Several studies concerning components on the way
 - E.g. EP in industry, high-power couplers, module assembly
 - Define/fix in-kind contributions
 - All experienced european labs participating
 - Goal:
 - Finish specifications so that tendering process can be started in fall 2008

