

Growth of RF Superconductivity In China

Chen Jiaer Zhao Kui

Institute of Heavy Ion Physics Peking University, Beijing, China

Milestones of SRF in China

I. Starting Phase of RF Superconductivity at IHIP, Peking University

□ R&D on fabrication of SC CAVITIES

- Single-cell SC cavities
- Cu-Nb Sputtering QWR

RF Superconducting Cavities

1st Single Cell
Cavity with China
made Nb (1994)

♦ RRR> 270

1.3 GHz Single cell cavity beam test at CAEP

Input Energy	3.45 MeV
Energy Gain	0.58 MeV
Pulse Intensity	o.1 A
Micro width	10 ps
Macro	1 µs

Cavity, cryostat and main coupler processed by PKU

Nb Sputtering System at PKU

Geometry of the SRF QWR

F ₀	143.2	MHz
β	0.11	
U_0 / E_a^{2}	0.0411	$J/(MV/m)^2$
R _s	3.12	${ m m}\Omega$
Z_{sh}	18.2	MΩ/m
$R_{s^*}Q$	26.2	Ω
H_p/E_a	6318	(A/m)/ (MV/m)
E_p/E_a	3.65	

□ Sputtered Nb-Cu SRF QWR

Before Sputtering

After Sputtering

Structure & quality of Nb film

Tc & RRR of Nb Film at various Position

Beam Loading Test in 2001

Energy Spectrum of Protons After QWR

II. Progress on SRF Accelerator based FEL Facility at PKU

PKU Superconducting Accelerator Based FEL Facility proposed in 2001

- Laser driven DC-SC injector
- Main accelerator cryomodule
- Bunch compressors and undulators

Planned PKU-ERL-FEL Laboratory

The cryogenic system for 2k

Productivity of Liquid He 122 l/hr

Numerical Simulations of DC-SC Injector

	Initial conditions		Simulati	ion results
	Radius	3.0 mm	Anode	65 °
Electron			inclination	
bunch	Length	10 ps	Synchronous	-50 °
			phase	
	Charge	60 pC	Energy	2.43 MeV
	Emittance	0 mm-rad	Radius	2.8 mm
SC cavity	Average gradient	15 MV/m	⊿E _k /E _k (rms)	2.63%
	Distance between	15 mm	Bunch Length	7.8 ps
Pierce	cathode & anode		ε _x (90%, n)	8.249 <i>π</i> mm-mrad
gun	Cathode voltage	-70 kV	ε _ν (90%, n)	8.832 πmm-mrad
	Anode voltage	0 kV	ε _z (90%, n)	55.223 keV-Deg

1+1/2-Cell Cavity

Nb cavity, RRR>250. Flanges, Alloy of Nb and Ti.

Test Bench of DC-SC Photoinjector

Photo-cathode Preparation Chamber with magnetic carriage for Cs_2Te and Cs_3Sb Photo-cathode

Beam loading Test at 4.2K (Aug. 2004)

Progress of DC Gun

Average I: 400µA @ 100mW laser power

- Lifetime of Cs₂Te: 10 hours @ 100 µ A, CW
- Progress of RF SC Cavity (Static Test)
 - $Q_0 \sim 2 \times 10^8$ @ 4.2K, Eacc ~ 4MV/m
- Progress of DC-SC Injector (Beam Test)
 - Beam spot at target 2 m apart from cathode

DC acceleration

Upgrade of DC-SC Injector

DC pierce structure 3+1/2 cell cavity LN shield Main Coupler HOM coupler Suspending system

Parameters of 3+1/2 DC-SC Photoinjector

Frequency	1.3 GHz	
Peak field at cathode	6 MV/m	
Charge per bunch	100 pC	
rms norm. emittance (at which energy?)	3.6 mm-mrad @ 5 MeV	
Peak current	15 A	
Average current	1~5 mA	
Cathode Material and QE	Ce2Te, 1~5%	
Laser wavelength	266 nm	
Laser pulse shape	Gaussian	

Collaboration for multi-cell cavity

- Peking University
- Ningxia OTIC
- Harbin Institute of Technology

Development of Nb materials at Ningxia OTIC with support of PKU

Nb Sheets RRR > 350-400

Weldless Nb Tube

3

IHIP, Peking University

EBW studies: collaboration between HIT (Harbin Institute of Technology) and PKU

1 EBW machine 2 sample welding 3 dumbbell welding 4 cavity welding

266×1.7(mm)

RRR measurement shows weld is qualified

Main cryomodule with a 9-cell cavity

Designed Performance of Main Accelerator

RF frequency (cavity at 2.0 K)	1.3 GHz
Accelerating voltage	17 MV/m guaranteed, goal is ≥ 20 MV/m
Q₀ @20 MV/m	1×10 ¹⁰
Electron Beam Peak Current	20~50 A
Bunch Charge	About 20~50 pC
Electron Beam Average Current	1.6~4.0 mA
External Q of Power Coupler	2×10 ⁶ ~1×10 ⁷
Cryogenic losses (stand-by)	12W at 2K

Working plan for multi-cell cavity

- □ 9-cell copper cavity
 - Qualification of dies of deep drawing
 - Cups trimming technology
 - Test of EBW tools
 - Cavity measurement and pre-tuning
- □ 5 cell Nb cavity
 - Modification of EBW tools if needed
 - EBW technology of multi-cell Nb cavity
 - BCP polishing, HPR, etc.

□ 9-cell Nb cavity

- EBW technology of 9-cell Nb cavity
- BCP polishing, HPR, etc.

Deep drawing of half cells

EB welding of dumbbells for 5-cell cavity

Dumbbells for 5-cell cavity

5-cell Nb cavity

Post Processing of cups and dumbbells

- □ BCP treatment of cups and dumbbells before welding
- □ Ultra pure HP water rinsing

Clean room

Ultra pure HP water system

RF measurement and Tuning

for half cell

for dumbbell

Tuning system of multi-cell cavity

Electrical Polishing (EP) Studies

The electrolyte of EP is consisted of hydrofluoric, sulfuric and lactic acids.

Development of SRF Cavities with Large Grain Nb Sheets

Development of single cell cavity with large grain Nb since 2005

Large Grain PKU Cavity, Ningxia Niobium

Result of first cryogenic tests

Vertical tests of the single cell large grain Nb cavity

Test #	BCP[µm]	HPR	Gasket	Eacc[MV/m]	Bpeak[mT]	Q[Bpeak]	Baking
1		R&D	AlMg	29	124 [QD]	9x10 ⁹	
1a				32.5	139 [Q]	1.4x10 ¹⁰	12 hrs
2	57	R&D	Indium	~ 8 (MP)		9x10 ⁹	
3		R&D	Indium	~ 15 (FE)		6.4x10 ⁹	
4	41	Prod.	AlMg	~ 11 (FE)		6x10 ⁹	
5	24	R&D	AlMg	34	145 [QD]	8.8x10 ⁹	
5a		Prod.	AlMg	43.5	183	1.6 x 10 ¹⁰	12 hrs
6		Prod	AlMg	42.2	180	1.4x 10 ¹⁰	

Treatment and Test by Dr. P. Kneisel at Jlab

PKU Eavity after Post-Burification at 1250E

42

III. SRF Activities at IHEP

Joint efforts of IHEP & KEK

Two 499.8MHz SC cavities of BEPCII were designed on the base of KEKB's cavity of 508.887 MHz. With the joint efforts, finally a minimum modification scheme was chosen:

• The cell equator length W is elongated from 13mm to 36.5mm to satisfy the only frequency change, beam duct radii of both side R_{SBP} and R_{LB} remained as it was.

□ Final design of 500MHz SC cavity for BEPC II

Vertical assembly and test at KEK

1. A temperature mapping device

2. Prepare to vertical test

3. Cold-down test

4. Coupler high power test

5. Damper

6. Cell and cryostat₆ assembly

	Specification		IHEP-#2	IHEP #2	
			First test	Second test	
Measurement Date		'04/12/08	'04/12/27	'05/01/26	
Frequency [MHz]		499.344255	499.176495	499.135505	
Initial Q ₀		3.42E+09	3.57E+09	3.35E+09	
Vc max [MV]	2.0	>3.59	2.05	2.90	
Field limitation		not limited	Thermal	Thermal	
Q ₀ at 2MV	1.0E+09	1.10E+09	0.67E+09	0.88E+09	
Q ₀ at 10 MV∕m		1.59E+09	Not reach	1.20E+09	
Qext (pickup port)		1.15E+11	1.36E+11	1.09E+11	
Qext (transmitted		Failure for	3.12E+11	2.94E+11	
port)		poor cable			
		connection			

Vertical test results at KEK---- summarized by Prof. T. Furuya

Final assembly and horizontal test in IHEP

1. Assemble the damper with the beam taper

2. Mount the damper on the cryostat

3. Mount the coupler on the cryostat

4. Install the doorknob on the coupler

5. Ready for horizontal test at test stand 48

Performance of vertical and horizontal test of IHEP-#1SCC

R&D on SC Cavities in IHEP

Clean assembling and rinsing room

SRF Experiment building With 230 m² user's area

1.3 GHz Cryostat & Test Frame, IHEP

Half cell after trimming

R&D on 1.3 GHz single cell cavity for CSNS

IV. Progress of Nb-Cu QWR at CIAE

Superconducting QWR cryogenic module developed at CIAE for Beijing Radioactive Ion Beam Facility (50 M\$)

The CIAE Booster Linac

□ The design goal of the booster is to have an energy gain of 2 MeV/q

The cryogenic module consists of four cylindrical coaxial quarter wave resonators

- □ The diameter of the cryostat is 1.2meter
- **□** The QWR frequency for $\beta = 0.10$ is 150.4 MHz with a geometry factor of 26.7 Ω .

Nb-Cu Sputtering Facility under construction

- Sputtering Chamber
- Mechanical finishing
- Electro-polishing
- Chemical polishing
- □ HPWR processing
- Drying and storage

V SRF Project at SSRF SIAP

Layout of the SSRF Complex & Campus

150 MeV Electron Linac and 3.5GeV Booster & Storage Ring

User operation scheduled on Spring 2009

The layout of cryomodules consisting of 3 CESR type cavities on the SSRF ring

The Main SSRF SRF Cavity System

□ RF Voltage > 4MV, Beam Power >600kW □ Stability: Amplitude < \pm 1%, Phase < \pm 1°

Three single cell SRF cavities (CESR type/ACCEL)
 Three 310kW Klystron RF power amplifiers (THALES)
 One 650W Helium refrigerator (Air-Liquid)
 Digital LLRF system

Parameters of the SRF Module

Frequency	499.654 MHz		
Tuning range	\pm 200 kHz		
Tuning resolution	10 Hz		
Operating temperature	4.2 K		
V _{acc}	>2.4 MV		
Q ₀ @2MV	1×10 ⁹		
Standby losses (RF off)	< 35 W		
Dynamic heat load at 2MV	< 65W		
Q _{ext} of input coupler	$1.8 \times 10^{5} \pm 0.2 \times 10^{5}$		
Power transferable to beam	>250 kW		

Vertical test results

The SSRF 3rd Harmonic Cavity System

□ Manipulation of bunch length in storage ring;

- Bunch lengthening for increasing Tousheck lifetime;
- Bunch shortening;
- □ Suppression of beam instabilities
- Providing Landau damping;
- Suppressing longitudinal multi-bunch instability;

The SSRF 3rd Harmonic Cavity System

- □ The SSRF 3rd harmonic cavity
- A CW passive SRF cavity system with frequency of 1498.962MHz (3xf_{RF})
- RF voltage about 1.8~2.0MV
- A heavily HOMs damped cavity
- **Cavity structure of the 3rd harmonic cavity**
- Cavity geometry optimization
- 2- cell or multi-cell super structure
- Beam pipe HOMs damper

 Single cell cavity
 Developing
 technology

• Copper and niobium cavities;

R&D of 3rd Harmonic Cavity

- □ Infrastructure
- Cavity processing lab
- RF cavity cold test setups;
- Vertical test setups;
- Refrigerator system

Conclusion

- □ SRF is well developed in China over last 20 years
- □ Great efforts have been made by PKU on SRF capability building in the starting stage
- A number of large projects like BEPCII, BRIBF,
 SSRF & CSNS involved in SRF in recent years
- International cooperation promotes the progress of SRF in China
- □ A growing phase of SRF is emerging in China

ACKNOWLEGEMENT

■ Many thanks to Dr. Zhang Chuang, Dr. Wang Guang Wei & Dr. Lu Hui-hua of IHEP; Dr. Guan Xia Ling of CIAE and Dr. Zhao Zhen Tang of SIAP for their important contribution

Many thanks to Prof. D. Proch, Prof. H. Padamsee, Dr. P. Kneisel, Dr. G. Neil, Dr. Saito and Dr. Furuya for their long lasting help and encouragement to our work from the very early days.

