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Abstract
The medium field Q-slope for Nb cavities has been stud-

ied in the past as a thermal feedback effect combined

with the nonlinear BCS surface resistance due to current-

induced RF pair-breaking. We are systematically explor-

ing the behavior of the medium field Q-slope with vari-

ous cavity parameters such as wall thickness, residual re-

sistance, bath temperature, Kapitza conductance, RF fre-

quency, RRR, and phonon mean free path. We study cases

involving only the standard (linear) BCS resistance as well

as those including the nonlinear BCS resistance. The sys-

tematic comparison suggests specific experiments to deter-

mine the role of the nonlinear contribution.

INTRODUCTION
One of the limiting factors in the performance of super-

conducting radio-frequency (SRF) cavities is the ability of

the cavity walls to transport heat created at the interior sur-

face of the cavity to the surrounding low-temperature bath.

If this heat is not dispersed sufficiently rapidly, it can sig-

nificantly increase the temperature of the cavity, which, in

turn, will lead to increased heat production; this process

is known as thermal feedback. Since an important goal in

cavity performance is to maximize the accelerating field

while minimizing heating losses, it is important to under-

stand the quantitative relationship between heat production

and the RF fields. This relationship is usually summarized

in the quality factor Q of a cavity, which is the number

of RF cycles it takes to dissipate all the energy stored in

the cavity, and its dependence on the magnitude of the RF

field. The dependence ofQ on the RF field strength is often

represented by a dimensionless parameter γ known as the

medium field Q-slope.

In this paper we explore the mechanisms of thermal feed-

back, with standard and nonlinear BCS resistance cases,

and how these mechanisms influence the quality factor of a

cavity. In the first section, we review a common theoretical

model of the heat flow problem and describe a numerical

method for solving the heat flow equations. We also discuss

an approximate analytic solution for the case of standard

BCS resistance from Halbritter [1] and its derivation. The

following section reviews the material properties involved

in the thermal feedback model and presents the particular

forms of material functions used in our calculations. We

then present and discuss the results of numerical calcula-

tions of quality factors for various cavity parameters. After

briefly comparing these numerical results with experimen-

tal data, we summarize our findings for the standard BCS

resistance case. Finally, we discuss the impact of the non-

linear BCS resistance.

Understanding and controlling the medium field Q-slope

is important to future continuous wave (CW) applications

such as the Energy Recovery Linacs (ERL) where cryogen-

ics costs dominate due to CW operation at medium fields

(< 20 MV/m). Previous studies on the medium field Q-

slope have been conducted by Graber [2], Saito [3], Bauer

[4], Ciovati [5], [6], and Visentin [7]. The thermal feedback

effect is discussed in [8] where it is called the ”global ther-

mal instability” (GTI), first discovered for high frequency

(3 GHz) cavities by Graber [2]. A thermal model applied

to a 3 GHz case predicts a medium field Q-slope as well

as a thermal instability at high fields for 3 GHz cavities.

Thermometry results at 3 GHz confirmed the global nature

of the thermal instability [2].

The new aspect of our studies is to explore systematic

trends in the medium field Q-slope with variations in RF

frequency, bath temperature, thermal conductivity, Kapitza

conductance, and wall thickness. Our numerical approach

also takes into account the full temperature dependences of

the thermal conductivity, Kapitza conductance, and surface

resistance.

THEORETICAL MODEL FOR HEAT
TRANSFER

The Quality Factor and the
Medium Field Q-slope

The quality factor Q of a SRF cavity is defined as

Q =
ω0U

P
(1)

where ω0 is the angular frequency of the RF field, U is the

total energy stored in the RF field inside the cavity, and P
is the total power dissipated in the cavity walls [8]. The

stored energy is given by an integral of the magnetic field

H over the volume of the cavity:

U =
μ0

2

∫
V

|H|2 dv (2)

and the dissipated power can be expressed as an integral of

the magnetic field over the interior surface of the cavity:

P =
1
2

∫
S

Rs|H|2 ds (3)

This equation defines the surface resistance Rs, discussed

in Section . If we take Rs to be constant across the surface,

then the quality factor can be written as

Q =
G

Rs
(4)
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where G is the geometry constant, defined by

G =
μ0ω0

∫
V
|H|2 dv∫

S
|H|2 ds (5)

In this paper, we will be more concerned with the behavior

of the surface resistance than that of the geometry constant.

The dependence of the quality factor on the strength of

the RF field is most often characterized by the medium field

Q-slope, represented by the dimensionless parameter γ, in-

troduced by Halbritter [1]. It is defined via an expansion of

the surface resistance Rs in even powers of the peak sur-

face magnetic field B:

Rs(B) = Rs0

[
1 + γ

(
B

Bc

)2

+O(B)4
]

(6)

Here,Bc = 0.2 T is the thermodynamic critical field of nio-

bium, and Rs0 is the surface resistance at small magnetic

fields (usually, B = 15 mT is chosen to define Rs0, since,

below this field level, the effects of the low-field Q-increase

become important). For many real cavities [9], it has been

shown that a power series of Rs also contains odd powers

of B; however, Halbritter has shown (as we will review in

Section ) that an increase in the surface resistance due only

to thermal feedback should take the form given in Eq. (6).

From Eqs. (4) and (6), we can see that the decrease in the

quality factor is given in terms of the medium field Q-slope

by

Q(B) =
G

Rs0

[
1 − γ

(
B

Bc

)2

+O(B)4
]

(7)

Values of the Q-slope γ can be measured experimentally

or, as will be done in this paper, estimated from a set of

basic cavity parameters by means of numerical calculation

or analytic approximation.

Heat Flow Equations
Though most SRF cavities have complex curved geome-

tries, their wall thicknesses are generally small in compari-

son with the surface curvature; thus, locally, the cavity wall

can be modeled as a flat slab. Without much loss of gen-

erality, we can take the wall to be an infinite flat slab of

niobium of thickness d. This choice makes the heat trans-

port calculation a one-dimensional problem. As shown in

Figure 1, we take the coordinate z to be the vertical dis-

tance from the top (interior) surface of the cavity. Above

this surface is the vacuum which carries the RF field. The

bottom (exterior) surface of the cavity is located at z = d,

and below this is the liquid helium bath.

In this configuration, the temperature distribution within

the cavity wall can be specified by a function T (z). For 0 <
z < d, we expect the steady-state temperature distribution

T (z) to satisfy the differential equation

d

dz

[
κ(T )

dT

dz

]
= 0 (8)

Figure 1: Schematic of the model of the cavity wall as an

infinite slab of niobium. Above z = 0 is the vacuum which

contains the RF field. Below z = d is the liquid helium

bath.

where κ is the temperature-dependent thermal conductiv-

ity, discussed in Section . The quantity

−κ(T )
dT

dz
≡ q (9)

is the heat flux (power per unit area) in the z-direction; this

relationship essentially defines thermal conductivity. Thus,

Eq. (8) simply expresses the condition that the heat flux

q be constant throughout the thickness of the wall, in ac-

cordance with the fact that no heat is created or absorbed

within the wall in the steady state.

Since Eq. (8) is a second-order differential equation, two

boundary conditions are required to fix a unique solution.

The first of these can be found by equating the heat flux

q(0) at the RF surface to the rate at which heat is being

produced at the surface. The mechanism of heat produc-

tion is essentially Joule heating, caused by surface currents

induced by the RF magnetic field. The power dissipated

per unit area can be expressed as

q =
1
2
Rs(T0)H2 (10)

where H is the peak surface magnetic field, and Rs is the

surface resistance, which, as indicated, is a function of the

temperature T0 ≡ T (z = 0) at the RF surface. The sources

of the surface resistance and its functional form are dis-

cussed in Section . Altogether, the boundary condition at

z = 0 reads

−κ(T0)
dT

dz

∣∣∣∣
z=0

=
1
2
Rs(T0)H2 (11)

The second boundary condition involves the Kapitza

conductance of the niobium-liquid helium interface. When

heat flows across an interface between superfluid helium

and a metallic solid, there is a discontinuity in temperature

at the interface [13]. It has been found that the temperature

difference is related to the heat flux q across the surface by

q = (Td − Tb)Hk(Td, Tb) (12)
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where Td is the temperature of the metal at the interface,

Tb is the temperature of the superfluid helium bath, and the

function Hk, known as the Kapitza conductance, is deter-

mined by the nature of the metallic surface. From this, the

second boundary condition can be written as

−κ(Td)
dT

dz

∣∣∣∣
z=d

= (Td − Tb)Hk(Td, Tb) (13)

where Td ≡ T (z = d) is the temperature of the niobium at

the interface.

Together, Eqs. (8), (11), and (13) will render a unique so-

lution for T (z), given the material functions κ(T ), Rs(T ),
and Hk(Td, Tb), the bath temperature Tb, and the magnetic

field magnitude H . The most useful information from the

solution will be the temperature T0 at the RF surface, which

can be used to find the surface resistance and thus the qual-

ity factor of a cavity.

Numerical Solution of Heat Flow Equations
One can obtain a numerical solution to the heat flow

equations by dividing the niobium slab into a series of

small layers and turning the differential equations above

into a set of finite-difference equations. We can take the

slab of thickness d to be divided into N layers of thickness

Δz = d/N and label them with the integers i = 0, 1, 2, . . .
N − 2, N − 1. We can take the temperature Ti in layer i to

be constant throughout the layer. Then, differential equa-

tion (8) can become

d

dz

[
κ(T )

dT

dz

]
i

=
1

Δz

[
κi
Ti+1 − Ti

Δz
− κi−1

Ti − Ti−1

Δz

]
(14)

where κi is the thermal conductivity between layers i and

i + 1 and is found by evaluating κ(T ) at the average tem-

perature of those two layers:

κi = κ

(
Ti + Ti+1

2

)
(15)

Similarly, the boundary conditions (11) and (13) can be

rewritten as

−κ(T0)
dT

dz

∣∣∣∣
z=0

= −κ0
T1 − T0

Δz
=

1
2
Rs(T0)H2 (16)

−κ(Td)
dT

dz

∣∣∣∣
z=d

= −κN−2
TN−1 − TN−2

Δz
= (TN−1 − Tb)Hk(TN−1, Tb) (17)

These equations can be rearranged to yield

T0 =
Rs(T0)H2Δz/2 + κ0T1

κ0
(18)

Ti =
κi−1Ti−1 + κiTi+1

κi−1 + κi
(19)

TN−1 =
κN−2TN−2 +Hk(TN−1, Tb)ΔzTb

κN−2 +HkΔz
(20)

Here, Eq. (19) applies for 1 ≥ i ≥ N − 2. Now, even

though the temperatures on the left hand sides of the above

equations also appear on the right hand sides of these equa-

tions, these N equations can be used to define a recursion

relation on the set of Ti. Given an initial set of Ti, one

can evaluate the right hand sides of the above equations us-

ing this set and thus obtain a new set of Ti through these

equations. If this process is repeated recursively (being

sure to update the values κi each time), the set of Ti will

converge to a numerical solution of the original differential

equation [10]. This iterative solution method has been en-

coded into to a program in the C++ language, and results

obtained from this program are presented below. (The ap-

proach adopted here is identical to that used in an earlier

effort using the FORTRAN program HEAT [10].)

Analytic Approximation for γ

With a little bit of analytic work on the heat flow equa-

tions, we can both justify the quadratic form for Rs(B) in

Eq. (6) and obtain an approximate formula for the Q-slope

γ (in the standard BCS case) first presented by Halbritter

[1]. To proceed, we can recall that the heat flux q in Eq. (9)

must be equal to the same constant for all z; also, this con-

stant q should also be equal to both the heat flux resulting

from the surface resistance in Eq. (10) and that from the

Kapitza conductance in Eq. (12). We can summarize this

with the two equations

H2

2
Rs(T0) = (Td − Tb)Hk(Td, Tb) (21)

(Td − Tb)Hk(Td, Tb) = −κ(T )
dT

dz
(22)

The second of these can be integrated with respect to z to

give

∫ d

0

(Td − Tb)Hk(Td, Tb) dz = −
∫ d

0

κ(T )
dT

dz
dz

⇒ (Td − Tb)Hk(Td, Tb)d = −
∫ Td

T0

κ(T ) dT (23)

Now, we must make some assumptions and approxima-

tions to make progress. First, we assume that the varia-

tions in temperature, i.e. T0 − Tb and Td − Tb, are small

compared with Tb. If this is the case, we can approximate

the thermal conductivity and the Kapitza conductance with

their values at T0 = Tb and Td = Tb; this is convenient

because the bath temperature Tb is known a priori. Mak-

ing this approximation also requires that the Kapitza con-

ductance function be non-zero when its two arguments are

equal. (As we will see below, this is only the case below the

lambda point of superfluid helium, whereas, at higher tem-

peratures, Hk(T, T ) = 0 and this approximation scheme

will breakdown.)

So, assuming we can do so, we replace κ(T ) and

Hk(Td, Tb) in Eq. (23) with the constants κ ≡ κ(Tb) and

Proceedings of SRF2007, Peking Univ., Beijing, China

180

TUP27

TUP: Poster Session I



Hk ≡ Hk(Tb, Tb) to give

Hkd(Td − Tb) = −κ
∫ Td

T0

dT = κ(T0 − Td) (24)

which allows us to solve for Td:

Td =
HkdTb + κT0

Hkd+ κ
(25)

This expression for Td can now be substituted into Eq. (21),

where we also replace Hk(Td, Tb) with Hk, giving

H2

2
Rs(T0) =

κHk

κ+Hkd
(T0 − Tb) (26)

or, defining

α ≡ κHk

κ+Hkd
(27)

we have
H2

2
Rs(T0) = α(T0 − Tb) (28)

At this point, we must use an approximation to the sur-

face resistance Rs(T0). Saying Rs(T0) = Rs(Tb) as we

did for the thermal conductivity and Kapitza conductance

would not suffice, for in that case, Rs(T0) would not de-

pend on the magnetic field. Instead, we can make a linear

approximation to Rs(T0) around Tb:

Rs(T0) = Rs(Tb) +
(
dRs

dT

)
T=Tb

(T0 − Tb) (29)

(One might say that going to first order in ΔT for Rs while

we only went to zeroth order in ΔT for κ and Hk is incon-

sistent; however, for the particular cases we’ll consider, the

variation of Rs with tempature is much more dramatic than

that of κ or Hk, so we are at least somewhat justified.) To

evaluate the derivative in this equation, we must assume an

explicit form for the surface resistance. The major features

of the dependence of Rs on T can be summarized in the

approximate equation

Rs(T ) = R0+RBCS(T ) = R0+C exp
(
− Δ
kBT

)
(30)

Here, Δ is the superconductor energy gap, which is roughly

constant for T < Tc/2, and R0 and C are constants. From

this, we can evaluate the derivative(
dRs

dT

)
T=Tb

=
Δ

kBT 2
b

RBCS(Tb) (31)

and plug it into Eq. (29) to find

Rs(T0) = Rs(Tb) +
Δ

kBT 2
b

RBCS(Tb)(T0 − Tb) (32)

Now, this expression for Rs(T0) can be inserted into

Eq. (28), resulting in

H2

2

[
Rs(Tb) +

Δ
kBT 2

b

RBCS(Tb)(T0 − Tb)
]

= α(T0−Tb)

(33)

which can be solved for T0:

T0 =
H2

2

[
Rs(Tb) − Δ

kBTb
RBCS(Tb)

]
+ αTb

α− H2

2
Δ

kBT 2
b
RBCS(Tb)

(34)

With this expression for the surface temperature T0

solely in terms of the bath temperature Tb, the magnetic

field H , and material functions, we have (approximately)

solved the problem at hand. To find the surface resistance,

we can simply plug Eq. (34) for T0 into Eq. (28); after a bit

of simplification, one finds

Rs(T0) = Rs(Tb)
[
1 − H2

2
Δ

kBT 2
b

RBCS(Tb)
1
α

]−1

(35)

If we assume that the quantity subtracted from 1 here is

small (which it should be, since it’s proportional to H2 and

we are looking for the medium field behavior), then we can

use (1−x)−1 ≈ 1+x. Then, after replacingH withB/μ0,

adding in some cosmetic critical fields Bc, and plugging in

Eq. (27) for α, we find Rs(T0) =

Rs(Tb)

[
1 +

B2
c

2μ2
0

Δ
kBT 2

b

RBCS(Tb)
(
d

κ
+

1
Hk

)(
B

Bc

)2
]

(36)

This expression has precisely the same form as that in

Eq. (6); we have thus given somewhat of a justification

for the quadratic dependence of Rs on B postulated there.

Identifying Rs(Tb) in Eq. (36) with Rs0 in Eq. (6), the co-

efficient of (B/Bc)2 in Eq. (36) should be identified with

γ in Eq. (6). Thus, we have arrived at an approximate ana-

lytic expression for the medium field Q-slope γ:

γ =
B2

c

2μ2
0

Δ
kBT 2

b

RBCS(Tb)
(
d

κ
+

1
Hk

)
(37)

This is the formula for the Q-slope presented by Halbritter

[1].

MATERIAL PROPERTIES

Thermal Conductivity

For the niobium thermal conductivity, we use an analytic

expression presented by Koechlin and Bonin [11]. Their

formula is based on a theoretical model of heat conduction

by electons and phonons and includes constants obtained

from fitting to experimental data. The expression involves

three free parameters: the temperature T , the residual resis-

tivity ratio RRR, and the mean free path of lattice phonons

l. RRR is a commonly used measure of the purity of a

niobium sample and is defined as the ratio of the electrical

resistivity at room temperature to the residual (low temper-

ature limit) resistivity. The phonon mean free path l may

also be influenced by strains and dislocations but, for rel-

atively pure samples, is roughly equal to the average grain

size.
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In the normal state (T ≥ Tc = 9.25K), they write the

thermal conductivity as

κn(T,RRR, l) =
[

1
ARRR T

+ aT 2

]−1

+
[

1
DT 2

+
1

BlT 3

]−1

(38)

and, in the superconducting state (T ≤ Tc), as

κs(T,RRR, l) = R(y)
[

1
ARRR T

+ aT 2

]−1

+
[

1
DT 2ey

+
1

BlT 3

]−1

(39)

Here, y is the superconductor energy gap divided by kBT ,

which can be approximated by

y =
Δ(T )
kBT

≈ Δ(0)
kBT

[
cos

(
πT 2

2T 2
c

)]1/2

(40)

and the function R(y) is given by

R(y) =
12
π2

[
f(y) + y ln(1 + e−y) +

y2/2
1 + ey

]
(41)

with

f(y) =
∫ ∞

0

z dz

1 + ez+y
(42)

The constants, as found by Koechlin and Bonin, are

A = 0.141 W K−2 m−1 (43)

a = 7.52 × 10−7 W−1 K−1 m (44)

B = 4.34 × 103 W K−4 m−2 (45)

1/D = 2.34 × 102 W−1 K3 m (46)

In the normal state, the electron contribution [the first

of the two brackets in Eq. (38)] dominates the thermal

conductivity, and it increases monotonically with tempera-

ture. However, in the superconducting state, for sufficiently

large phonon mean free paths, the phonon contribution (the

second bracket) can lead to a local maximum in the ther-

mal conductivity as a function of temperature, known as a

phonon peak. The height of the phonon peak increases with

increasing values of l. For all values of l and T , an increase

in RRR produces an increase in the thermal conductivity.

Figures 2 and 3 demonstrate these behaviors with plots of

κ(T ) for various values of l and RRR.

Experience shows that most fine grain Nb has no phonon

peak, due to the phonon mean free path being comparable

to the grain size (< 0.1 mm). Post purified cavities are

expected to have a phonon peak due to grain growth to 1-2

mm. Large grain Nb has a phonon peak which can easily be

depressed by a small amount of strain (< 10%) [12]. How-

ever we can expect that some or all of the phonon peak may

re-appear after 800 C annealing as most cavities receive for

H degassing. Hence there is a large range in the expected

size of the phonon peak for Nb cavities depending strongly

on how the cavity has been prepared.

Figure 2: Thermal conductivity versus temperature for

RRR = 300 and l = 0.1 mm (solid), 0.5 mm (short

dashed), 1.0 mm (medium dashed), and 5.0 mm (long

dashed).

Figure 3: Thermal conductivity versus temperature for l =

0.5 mm and RRR = 100 (solid), 200 (short dashed), 300

(medium dashed), and 500 (long dashed).

Surface Resistance

The surface resistance of a niobium cavity can be written

as a sum of two contributions:

Rs(T ) = R0 +RBCS(T ) (47)

The temperature-independent residual resistance R0 can

arise from any number of sources, such as foreign mate-

rial inclusions or condensed gases, and is typically around

the range 5-20 nΩ [8]. The BCS resistance RBCS arises

from the motion of normal electrons near the RF surface;

it can be calculated from the BCS theory of superconduc-

tivity but generally has a rather complicated form. For the
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section on standard BCS resistance, we will use a Pippard

approximation for RBCS [10]:

RBCS(T ) =

(2.78 × 10−5 Ω)
ν2

t
ln

(
148t
ν

)
exp

[
−1.81g(t)

t

]
(48)

t =
T

Tc
, ν =

f

2.86 GHz
, g(t) =

[
cos

(
πt2

2

)]1/2

(49)

where f is the frequency of the RF field. Here, we can

see that the BCS resistance increases exponentially with

temperature in the superconducting state.

Kapitza Conductance
Below, we will use three different forms for the Kapitza

conductance Hk, each obtain from fits to experimental data

[13]. The first of these has been obtained from data on

unannealed (UA) niobium interfacing with superfluid he-

lium:

Hk(Td, Tb) =
(

170
W

m2K

)(
Tb

1 K

)3.62

f(t) (50)

where

f(t) = 1 +
3
2
t+ t2 +

1
4
t3 , t =

Td − Tb

Tb
(51)

The second comes from measurements on annealed (A)

niobium interfacing with superfluid helium:

Hk(Td, Tb) =
(

200
W

m2K

)(
Tb

1 K

)4.65

f(t) (52)

where f(t) is again given by Eq. (51). Finally, we have

an expression for the heat conductance when the bath tem-

perature has exceeded the superfluid lambda point (2.18 K)

and the helium has begun to nucleate and boil (NB):

Hk(Td, Tb) =
(

1.2 × 104 W

m2K

)(
Td − Tb

1 K

)0.45

(53)

So, we have two conductances that apply below 2.18 K,

(UA) and (A), and one that applies above 2.18 K, (NB).

To compare the three formulae, we can plot the heat flux

q = (Td − Tb)Hk(Td, Tb) across the interface as a func-

tion of the temperature difference ΔT = Td − Tb, for each

of the three functions above, all with a bath temperature of

2.18 K. This is shown in Figure 4. It is clear that annealed

niobium results in the best heat conduction to the bath, fol-

lowed by unannealed niobium (for low enough ΔT ). An-

other important feature to note from this figure is that the

nucleate boiling curve has zero slope at ΔT = 0, or in

other words, the heat conductance Hk is zero there. This

means that the analysis in Section that led to a quadratic

Rs(B) and Halbritter’s formula for γ would break down in

the case of nucleate boiling conductance.

Figure 4: Thermal conductance across Nb-LHe interface as

a function of temperature difference for annealed niobium

(solid), unannealed niobium (short dashed), and nucleate

boiling (long dashed).

NUMERICAL RESULTS

Figures 5, 7, 9, 11, 13, 15, and 17 summarize the results

of numerical calculations of Q values in the standard BCS

case for various properties of niobium cavities. In each

figure, one of the following cavity properties is varied while

the others are held fixed at the baseline values given here in

parentheses:

- RF frequency f (1.3 GHz)

- Helium bath temperature Tb (1.8 K)

- Residual resistance R0 (10 nΩ)

- Wall thickness d (3 mm)

- Residual resistivity ratio RRR (300)

- Phonon mean free path l (0.1 mm)

The only exception to this pattern is Figure 17, where Tb

= 2.18 K, the lambda point of superfluid helium, instead of

1.8 K; all other parameters have the baseline values.

Figures 6, 8, 10, 12, 14, 16, and 18 display γ values com-

puted for each of these cases. They were calculated from a

least-squares fit to Eq. (6) of the numerical values obtained

for Rs(B) up to B = 0.1 T. In general, the quadratic fit to

Rs(B) worked very well, with an average of R2 = 0.92.

These figures also display the corresponding γ values com-

puted from Halbritter’s approximate formula in Eq. (37).

It is clear from the figures that this formula is an excel-

lent appoximation for almost all cases; the rms deviation

between Halbritter’s formula and the numerical results is

5.6%. However, in the case of nucleate boiling heat trans-

fer at the Nb-LHe interface, Halbritter’s formula is not ap-

plicable, since Hk = 0 implies γ = ∞.

In Figures 5 and 6, we see that the baseline Q values de-

crease and γ increases with increasing RF frequency f , as

is to be expected from the f2 increase of the BCS surface

resistance. Though the Q-slopes shown in these figures

(and others) may seem atypically dramatic when compared
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to experimental observation, it is important to note that, in

all these cases, the phonon mean free path l has been set to

0.1 mm, in which case there is no phonon peak in the ther-

mal conductivity, corresponding to fine grain Nb that has

not been post-purified. It is also important to note that the

high field Q-slope phenomena take over above B = 0.1 T,

and thus the medium field Q-slope calculations are prob-

ably relevant above B = 0.1 T only for electropolished

(EP) cavities which have been baked at 100-120 C where

the high field Q-slope disappears [14]. For the higher fre-

quencies shown in Figure 5, we see behavior that resembles

a high field Q-drop, even though only thermal effects have

been considered in these calculations.

Figure 5: Variation of quality factor with magnetic field for

RF frequencies f = 0.6 GHZ (�), 1.3 GHz (�), 2.0 GHz

(�), and 3.0 GHz (×).

Figure 6: Medium field Q-slope values for varying RF

frequency f , calculated numerically (shaded) and from

Halbritter’s approximate formula (unshaded).

The variation of Q and γ with wall thickness d is shown

in Figures 7 and 8. For low magnetic fields, the Q values

are largely independent of d; for higher fields, a smaller

wall thickness improves Q values and thus decreases γ.

An intuitive explanation for this is that bringing the helium

bath closer to the RF surface helps the cooling process.

In Figures 9 and 10, we see a decrease in baseline Q
values and an increase in γ values with increasing residual

resistance R0, due to added heating from the extra surface

resistance. Here, we see a difference in trends between the

Figure 7: Variation of quality factor with magnetic field for

wall thicknesses d = 1 mm (�), 2 mm (�), 3 mm (�), and

4 mm (×).

Figure 8: Medium field Q-slope values for varying wall

thickness d, calculated numerically (shaded) and from

Halbritter’s approximate formula (unshaded).

numerical results and Halbritter’s formula: Halbritter’s for-

mula predicts that γ will be independent of R0, while the

numerical results show it increasing, though very slightly,

with R0.

Figure 9: Variation of quality factor with magnetic field for

residual resistances R0 = 3 nΩ (�), 5 nΩ (�), 10 nΩ (�),

and 20 nΩ (×).

We see in Figures 11 and 12 that the Q-slope is only

slightly improved when RRR is increased. This is consis-
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Figure 10: Medium field Q-slope values for varying resid-

ual resistance R0, calculated numerically (shaded) and

from Halbritter’s approximate formula (unshaded).

tent with the fact that, below 2 K, the thermal conductivity

is mostly determined by the value of the phonon mean free

path l, as demonstrated in Figures 2 and 3. In Figures 13

and 14, we see a decrease in baseline Q values and an in-

crease in γ values with increasing bath temperature.

Figure 11: Variation of quality factor with magnetic field

for residual resistivity ratios RRR = 100 (�), 200 (�), 300

(�), and 500 (×).

Figure 12: Medium field Q-slope values for varying resid-

ual resistivity ratio RRR, calculated numerically (shaded)

and from Halbritter’s approximate formula (unshaded).

Figures 15 and 16 show the variation of Q and γ val-

ues with the phonon mean free path l, which, as discussed

Figure 13: Variation of quality factor with magnetic field

for bath temperatures Tb = 1.4 K (�), 1.6 K (�), 1.8 K (�),

and 2.0 K (×).

Figure 14: Medium field Q-slope values for varying bath

temperature Tb, calculated numerically (shaded) and from

Halbritter’s approximate formula (unshaded).

above, can generally be associated with the average grain

size of the niobium sample. It is clear that increasing the

grain size, and thus introducing a larger phonon peak in

the thermal conductivity, will decrease γ values and can

remove medium field Q-slopes that are present in samples

with smaller grain sizes. These results demonstrate that it is

important to know the treatment history of a given sample,

since an estimation of its phonon mean free path is crucial
to analyzing the results of Q and γ measurements.

Finally, in Figures 17 and 18, we have Q and γ values

for the three different thermal conductance functions. As

expected, we see that the annealed niobium has a lower γ
value than the unannealed niobium. The most interesting

point here, though, is that the Q(B) curve for the nucleate

boiling conductance shows more of a linear behavior than

a quadratic one (that is, dQ/dB at B = 0 is not zero, as

it should be according to Eq. (6)), hence the huge γ value.

However, this is not all that unexpected, since, as noted

above, the derivation of the quadratic form for Q(B) in

Eq. (6) breaks down when Hk(T, T ) = 0, as is the case for

the nucleate boiling conductance.
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Figure 15: Variation of quality factor with magnetic field

for phonon mean free paths l = 0.05 mm (�), 0.1 mm (�),

0.5 mm (�), 1.0 mm (×), and 5.0 mm (+).

Figure 16: Medium field Q-slope values for varying

phonon mean free path l, calculated numerically (shaded)

and from Halbritter’s approximate formula (unshaded).

Figure 17: Variation of quality factor with magnetic field

for thermal conductances of unannealed niobium (�), an-

nealed niobium (�), and nucleate boiling helium (�).

Figure 18: Medium field Q-slope values for varying ther-

mal conductance, calculated numerically.

COMPARISON WITH EXPERIMENT
The first general observation we can make when compar-

ing the above theoretical and numerical results with exper-

imental data is that the thermal feedback model with stan-

dard BCS resistance generally underestimates the medium

field Q-slope for frequencies below 2.5 GHz. Figure 19

summarizes the results of several measurements of γ values

compiled by Ciovati [15]. The cavities represented here lie

well within the range of cavity parameters considered in the

previous section, yet these experimental γ values are cen-

tered around 2 or 3 while those calculated from our model

are mostly less than 1. A likely cause for this discrepancy

is the nonlinear BCS resistance, which we discuss below.

Figure 19: Values of the medium field Q-slope taken from

measurements compiled by Ciovati [15]. Each value shown

here is the average of a set of values obtained from mea-

surements on a set of similar cavities. The cavities have

frequencies 804 MHz (SNS), 1.5 GHz (CEBAF), and 1.3

GHz (TESLA).

In spite of this difference in scales, one can still com-
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pare the general trends predicted by our model with those

seen in experiment. The predicted increases in γ with in-

creasing frequency and wall thickness and with decreasing

phonon mean free path are all consistent with experimen-

tal trends [15]. However, one trend predicted by our model

is strongly contradicted by experiment; while our results

show γ increasing with increasing bath temperature, ex-

perimental results show the opposite. Figure 20 shows γ
values obtained from measurements on a CEBAF single-

cell cavity at bath temperatures 1.37 K and 2.0 K; here, the

higher bath temperature leads to the lower γ value. Also

shown in the figure are the results of numerical simulula-

tions we ran with parameters matching those of the CEBAF

cavity; in our model, the higher bath temperature leads

to the higher Q-slope. This is a significant disagreement

between our thermal feedback model and experiment that

needs to be addressed further. There is no indication that

the inclusion of nonlinear BCS resistance in our model will

resolve this discrepancy.

Figure 20: Comparison between data from a CEBAF cavity

(light gray) and numerical simulation (dark gray).

For higher frequencies (> 2.5 GHz), the results of the

standard BCS model are found to be surprisingly close to

those of experimental measurements. Figure 21 shows a

plot of Q vs B from measurements on a 3.9 GHz TESLA

cavity [4] along with the results of a numerical simula-

tion with matching cavity parameters. In the medium field

range, the curves agree fairly well, with the simulation giv-

ing Q values only slightly higher than the data. This agree-

ment is surprising in that, here and in other cases involv-

ing high frequency, the nonlinear BCS theory below is not
needed to bring the simulations closer to experimental data.

This agreement was also observed by Graber at 3 GHz [2].

Another interesting agreement between the numerical re-

sults and experiment can be found in the nucleate boiling

regime. In Figure 17 above, we saw that numerical sim-

ulations predicted a linear (dQ/dB �= 0 at B = 0), not

quadratic, dependence of Q on B. As mentioned above,

this is consistent with the fact that Halbritter’s approxima-

tion and the quadratic form it implies cannot be applied to

the nucleate boiling case because the thermal conductance

goes to zero as the temperature difference across the Nb-

Figure 21: Measurement of Q as a function B for a 3.9

GHz TESLA cavity (�) [4] compared with the results of a

numerical simulation with matching cavity parameters (�).

LHe interface goes to zero. The linear behavior seen in our

numerical results has also been observed experimentally by

Ciovati [6], as shown in Figure 22.

Figure 22: Measurements of Q vs B on a CEBAF cavity

by Ciovati [6]. The T = 2.2 K curve (in yellow) is in the

nucleate boiling regime and clearly shows a more linear

than quadratic dependence of Q on B. (c.f. Figure 17.)

SUMMARY FOR THERMAL FEEDBACK
WITH STANDARD BCS RESISTANCE

Though the standard BCS thermal feedback theory

seems to underestimate the medium field Q-slope, it has

demonstrated the general trends to be expected in thermal

feedback effects, except possibly for the dependence of γ
on the bath temperature, where theory and experimental

data clearly disagree. This disagreement presents an inter-

esting puzzle that warrants further investigation. Another

such puzzle is presented by the unexpected agreement be-

tween our model and experiment found at high frequen-

cies. One concrete result of this analysis has been a thor-

ough confirmation of the agreement between Halbritter’s

approximate formula for γ and the results of numerical cal-
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culations of γ.

NONLINEAR BCS RESISTANCE
There is an intrinsic nonlinear correction to the surface

resistance Rs which results from the pair-breaking effect

of the supercurrent density induced by the RF field [16].

The pair breaking is manifested via a change of the elec-

tron energy spectrum in a current-carrying superconductor,

E(k) = E0(k) + vspF , where vs = J/en is the super-

current velocity, n is the number density of superelectrons,

E0(k) is the quasi-particle spectrum at J = 0, and pF is the

Fermi momentum. The increased density of normal elec-

trons corresponds to a decreased gap Δ(vs) = Δ−pF |vs|.
Solving the kinetic equation for the distribution function of

quasi-particles in a superconductor in a strong rf field al-

lows a calculation of the current-induced RF pair breaking

in the clean limit for Type II superconductors. The non-

linear surface resistance is found to increase quadratically

with RF field as follows [17]:

Rs =

[
1 + C

(
Δ
kBT

)2 (
H

Hc

)2
]
Rs0 (54)

C =
π2

384

[
1 +

ln 9
3 ln(4.1kBTΔ ξ2/�2ω2λ2)

]
(55)

HereH is the RF field,Hc the thermodynamic critical field,

ξ the coherence length, λ the penetration depth, ω = 2πf ,

and Rs0 the standard BCS resistance. The contribution of

the logarithmic term in the brackets for Nb at 2K and 2GHz

is less than 8%, which allows a simpler approximate ex-

pression:

Rs
∼=

[
1 +

π2

384

(
Δ
kBT

)2 (
H

Hc

)2
]
Rs (56)

For Nb at 2.0 K, the factor C(Δ/kBT )2 ≈ 2.

The simple quadratic dependence is only valid for small

H , typically below 40 mT at 2 K. The pair-breaking non-

linearity becomes more pronounced when H > (T/Tc)Hc

[18]. The full dependence is given by

Rs =
4RBCSe

β0

β3
0(2πβ0)1/2

(57)

β0 =
vspF

kBT
=

π

23/2

H

Hc

Δ
kBT

(58)

and is shown in Figure 23 for H from 0 to ≈ 160 mT for

Nb at 2 K. In this case the BCS nonlinearity can double Rs

at H0 ≈ 100 mT as compared to RBCS .

The nonlinear BCS surface resistance discussed so far is

for the clean limit (le 
 ξ) only (here, le is the electron

mean free path). Taking into account impurity scattering is

a much more complicated problem but the nonlinearity in

surface resistance is generally expected to decrease in the

dirty limit [16].

Figure 23: Increase of BCS resistance due to pair-breaking

at high supercurrent density β0 [18].

Once again we show the trends for the medium field Q-

slope for changes in RF frequency, bath temperature, RRR,

phonon mean free path (phonon peak), residual resistance,

and wall thickness. For more accurate values of the stan-

dard BCS resistance we use the results from Halbritter’s

program (the SRIMP version at Cornell) instead of the Pip-

pard approximation in Eq. (48). Figures 24-29 compare

the Q vs H curves for BCS and nonlinear BCS due to vari-

ations in one of the following cavity properties while the

others are held fixed at the baseline values given here:

- RF frequency f (1.3 GHz)

- Cavity wall thickness d (3.0 mm)

- Residual resistance R0 (5 nΩ)

- Kapitza conductance Hk (annealed Nb)

- Residual resistivity ratio RRR (300)

- Helium bath temperature Tb (1.8 K)

- Phonon mean free path l (1.3 mm)

- Geometry facor G (280 Ω)

Note that this baseline set of parameters is somewhat dif-

ferent from the first set of baseline parameters used for the

standard BCS case above in order to provide some new in-

formation. For example, the baseline phonon mean free

path chosen here is 1.3 mm which will correspond to a

small phonon peak in the thermal conductivity, as opposed

to the previous baseline case of 0.1 mm phonon mean free

path with no phonon peak. As a result, the medium field

Q-slopes for the standard BCS case here are much smaller.

As for the standard BCS cases, the medium field Q-slope

changes more weakly with changes in wall thickness, RRR,

and residual resistance.

As expected, the nonlinear BCS resistance greatly in-

creases the medium field Q-slope over the BCS case. The

strongest Q-slopes are expected for high frequencies and

small phonon mean free paths. Figures 30 and 31 show

the strong increase in the gamma values between the stan-

dard BCS and nonlinear BCS cases, and also the trends in

gamma values for changes in phonon mean free path and rf

frequency, the two strongest dependencies.

To compare these results with experimental data, we
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Figure 24: Variation of the cavity Q with RF surface mag-

netic field for RF frequencies between 800 MHz and 3900

MHz. In each case Q vs H curves are given for BCS and

nonlinear BCS cases (in color).

Figure 25: Variation of the cavity Q with RF surface mag-

netic field for cavity wall thickness between 1 mm and 4

mm. In each case Q vs H curves are given for BCS and

nonlinear BCS cases (in color).

have run simulations using the nonlinear BCS resistance

and matching the cavity parameters for measurements on

two Cornell cavities [19], [4]; the results are shown in Fig-

ures 32 and 33. In Figure 32 we see that the numerical re-

sults and experimental data argee quite well in the medium

field range; for higher fields, however, the nonlinear BCS

results show a stronger Q-slope than the data. In Figure

33, the agreement is even better in the medium field range;

for higher fields here, the data shows a strong high field

Q-slope that cannot be reproduced by the nonlinear BCS

effects.

Figure 26: Variation of the cavity Q with RF surface mag-

netic field for residual resistance between 1 nΩ and 10 nΩ.

In each case Q vs H curves are given for BCS and nonlin-

ear BCS cases (in color).

Figure 27: Variation of the cavity Q with RF surface mag-

netic field for RRR between 100 and 700. In each case Q
vs H curves are given for BCS and nonlinear BCS cases

(in color).

CONCLUSIONS

The medium field Q-slope depends on a large number of

physical parameters: RF frequency, bath temperature, ther-

mal conductivity (especially the magnitude of the phonon

peak), Kaptiza conductance, wall thickness, electron mean

free path (which changes due to mild baking) and resid-

ual resistance. Some of these parameters are not very well

known for each cavity or even for each test, in particular

the Kaptiza conductance due to baking conditions or the

phonon mean free path (due to residual strains). Accu-

rate modeling of the data requires a good knowledge of the

physical parameters of the cavity, some of which are often

not known to the level of detail necessary. Therefore it is

useful to study the trends.
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Figure 28: Variation of the cavity Q with RF surface mag-

netic field for bath temperatures between 1.5 and 2 K. In

each case, Q vs H curves are given for BCS and nonlinear

BCS cases (in color).

Figure 29: Variation of the cavity Q with RF surface mag-

netic field for phonon mean free paths between 0.1 and 5

mm. In each case Q vs H curves are given for BCS and

nonlinear BCS cases (in color).

There are two striking trends in thermal feedback: one

for frequency dependence and the other for phonon mean

free path dependence. Post purified cavities and large grain

cavities with higher thermal conductivity generally show

reduced slopes primarily due to the appearance of stronger

phonon peak in the thermal conductivity. For high fre-

quency cavities the quadratic frequency dependence of the

BCS surface resistance eventually results in a thermal in-

stability well below the rf critical field (Figure 24). This

has been predicted and observed as GTI in 3 GHz cavities.

GTI has also been observed in 3.9 GHz [4] and for a 2.8

GHz cavity operating in the TE mode [6]. At low frequen-

cies, however, the thermal feedback effect with standard

BCS alone is much smaller and does not generally lead to

a global instability. The absence of a global thermal insta-

Figure 30: Gamma values for BCS and nonlinear BCS for

various phonon mean free paths.

Figure 31: Gamma values for BCS and nonlinear BCS for

various RF frequencies.

bility for low frequency was one of the original important

reasons for selecting a frequency near 1 GHz for the linear

collider [20].

Inclusion of the nonlinear BCS contribution improves

the fit to the medium field Q-slope for the 1.5 GHz cav-

ity; however inclusion of the stronger high field behavior

as shown in Figures 30 and 31 overestimates the medium

field Q-slope as compared to the data. Similarly, for the 2.8

GHz case the nonlinear BCS quadratic term alone yields

too strong a Q-slope as compared to the data. In general

inclusion of the nonlinear BCS resistance often makes the

medium field Q-slope stronger than the observed Q-slope

[4].
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Figure 32: Q vs Eacc from measurements on a 1.3 GHz

Cornell cavity [19], compared with the results of numerical

calculations using the nonlinear BCS resistance.

Figure 33: Q vs Epk from measurements on a 1.5 GHz

Cornell cavity [4], compared with the results of numerical

calculations using the nonlinear BCS resistance.
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