A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

York R.

PaperTitlePage
WE206First test results of half-reentrant single-cell superconducting cavities407
 
  • M. Meidlinger, J. Bierwagen, S. Bricker, C. Compton, T. Grimm, W. Hartung, M. Johnson, J. Popielarski, L. Saxton, R. York
    National Superconducting Cyclotron Laboratory
  • P. Kneisel
    TJNAF
  • E. Zaplatin
    Forschungszentrum Julich
 
 Particle physicists are on the verge of reaching a new frontier of physics, the Terascale, named for the teravolts of kinetic energy per particle required to explore this region. To meet the demand for more beam energy, superconducting cavities need to achieve higher accelerating gradients. It is anticipated that niobium cavities will reach a performance limit as the peak surface magnetic field approaches the critical magnetic field. "Low-loss" [1] and "reentrant" [2] cavity designs are being studied at CEBAF, Cornell, DESY, and KEK, with the goal of reaching higher gradients via lower surface magnetic field, at the expense of higher surface electric field. At present, cavities must undergo chemical etching and high-pressure water rinsing to achieve good performance. While these surface treatment methods have been effective for low-loss and reentrant single-cell cavity designs, it is not clear whether the same methods will be adequate for multi-cell versions. A "half-reentrant" cavity shape has been designed with RF parameters similar to the low-loss and reentrant cavities, but with the advantage that the same surface preparation should be reliable for multi-cell half-reentrant cavities. Two 1.3 GHz prototype single-cell half-reentrant cavities have been fabricated and tested at Michigan State University (MSU). One of the cavities was post-purified, etched via buffered chemical polishing, and tested at Thomas Jefferson National Accelerator Facility (TJNAF), reaching a maximum accelerating gradient of 35 MV/m. The halfreentrant cavity concept, design, fabrication, and first test results are presented. 
slides iconSlides(PDF) 
WEP01Studies of alternative techniques for niobium cavity fabrication429
 
  • C. Compton, D. Baars, T. Bieler, J. Bierwagen, S. Bricker, W. Hartung, D. Pendell, R. York
    Michigan State University
  • L. Cooley, H. Jiang, B. Kephart
    Fermilab
 
 Alternative fabrication techniques for superconducting radio frequency (SRF) cavities are being investigated. The main goals are to reduce cavity fabrication costs and expand possibilities for advanced cavity designs. At present, SRF cavities are fabricated via deep drawing of parts from sheet material and electron beam welding (EBW) to join the parts together. EBW produces welds of high quality, but the procedures are costly and timeconsuming. Alternative technologies being explored include tungsten inert gas (TIG) welding of Nb, hydroforming of Nb, and electron-beam free form fabrication (EBFFF) of Nb. If techniques can be developed which do not degrade the Nb purity, TIG welding could reduce or eliminate the need for EBW. Hydroforming could also be an alternative to deep drawing and EBW. As has been demonstrated by several other groups, complete cavities can be hydroformed from Nb tubes in one step using internal pressure and outer dies. Hydroforming of cavities in an industrial setting is presently being explored. EBFFF is a new technique for forming parts from wire stock with an electron beam. Though it may not be suitable for fabrication of a complete cavity, EBFFF could be used to produce tubes for hydroforming or parts for drift tube cavities. Additionally, the possibility of producing single crystal tubes using EBFFF is being explored.