Paper | Title | Page |
---|---|---|
MOPB006 |
Narrowband Impedance Studies in the HEPS Storage Ring | |
|
||
The High Energy Photon Source (HEPS) is a fourth-generation synchrotron radiation facility with design beam emittance of less than 60 pm. Impedance modeling is an important subject due to the adopted small beam pipe as well as the tight requirements from beam collective effects. Narrowband impedances can be generated by the discontinuity of the vacuum chamber or the finite conductivity of the beam pipe. The coupled bunch instabilities caused by the narrowband impedances could restrict the beam current or perturb the synchrotron radiations. In this paper, the narrowband impedances in the HEPS storage ring are investigated element by element. Their influence on the beam instability and heat load are discussed. | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPB028 | Investigation on the Trapped Modes of CPMU at HEPS | 62 |
|
||
The Cryogenic Permanent Magnet Undulator (CPMU) is a crucial component in synchrotron radiation sources. Due to the small magnet gap of CPMU, the interaction between the beam and its surroundings is strong, which can result in a significant contribution to coupling impedance. In this work, the influence of CPMU on coupling impedance was investigated using wakefield and eigenmode solvers. The results indicated that some of the transverse impedance resonances in CPMU were much stronger than the impedance threshold determined by synchrotron radiation damping, which could cause vertical beam instability. To address this issue, different types of damping materials were investigated through simulations to suppress the resonances. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SAP2023-MOPB028 | |
About • | Received ※ 10 July 2023 — Revised ※ 11 July 2023 — Accepted ※ 12 July 2023 — Issued ※ 01 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |