

NICA Collider Magnetic Field Correction System

M. M. Shandov, H. G. Khodzhibagiyan, S. A. Kostromin, O. S. Kozlov,

I. Yu. Nikolaichuk, T. Parfylo, A. V. Phillippov, A. V. Tuzikov

Veksler and Baldin Laboratory of High Energy Physics, Joint Institute for Nuclear Research, Dubna, Russia

Correctors in the Collider Lattice

- 92 correctors in arcs (46 per each beam)
- 32 correctors in straight section (16 per each beam)
- 4 correctors in straight section (combined for 2 beams)
- 4 dodecapole correctors in central QFF
- Total: 132 correctors

Goals of the Correction System

Field Type	Correction goal	Field Strength	Ampere-turns
"Normal" dipole (b_0)	Horizontal orbit	0.15 T	11500
"Skew" dipole (a_0)	Vertical orbit	0.15 T	11500
"Normal" quadrupole (b_1)	Betatron tune	3 T/m	12500
"Skew" quadrupole (a_1)	Betatron tune coupling	3 T/m	12500
"Normal" sextupole (b_2)	Ring chromaticity	$175 { m T/m^2}$	8260*
"Normal" octupole (b_3)	Fringe field influence	1300 T/m ³	4890
"Normal" dodecapole (b_5)	Fringe field influence	125000 T/m ⁵	1000

* – Average value for 3 layers

$$B_n = \frac{1}{n!} \frac{\partial B_y^n}{\partial x^n}, n = 0, 1, \dots$$

M. Shandov et. al, VBLHEP, JINR, Dubna

DA Calculation

Optimization of the NICA collider optics structure

A. V. Philippov et. al., 2019

$\mathbf{DA} \approx 8 \div 9 \sigma (\mathbf{MAD} - \mathbf{X})$

M. Shandov et. al, VBLHEP, JINR, Dubna

DA Correction. Example

M. Shandov et. al, VBLHEP, JINR, Dubna

NICA Collider Magnetic Field Correction System

6

Chroma

Coupl

ection

DA Correction. Example

M. Shandov et. al, VBLHEP, JINR, Dubna

NICA Collider Magnetic Field Correction System

LHEP

Magnet Design

- Dipole
- Sextupole
- Octupole

Correctors' Magnets for the NICA Booster and Collider M. M. Shandov et. al., 2019

SC Magnets for Project of NICA D. N. Nikiforov et. al., **WEB01**

M. Shandov et. al, VBLHEP, JINR, Dubna

Magnetic Measurement

M. Shandov et. al, VBLHEP, JINR, Dubna

Collider Magnets Measurement

M. Shandov et. al, VBLHEP, JINR, Dubna

NICA Collider Magnetic Field Correction System

10

M. Shandov et. al, VBLHEP, JINR, Dubna