During the last decade instruments of machine learning are gaining popularity in accelerator control systems. One of these instruments is decision support system (DSS) that is already successfully used in other fields of science. In this article a motivation for implementation of such system for INR RAS linac tuning is discussed. Concept of developed DSS is presented. Changes in INR RAS linac data acquisition system essential for future DSS operation are proposed.

Introduction

Abstract

Machine learning (ML) techniques are widespread in modern science, industry and everyday life. Majority of these tasks can be applicated to accelerator physics. One of the ML instruments is a decision support system (DSS). In case of INR linac DSS, which can help beam operator to analyze the current situation and make decisions to

solve problems that arise during accelerator run, is a suitable system that would be helpful for routine operation.

INR linac DSS concept

INR linac DSS is designed as a Bayesian network. Its advantage is ability to insert knowledge in it by designing its structure and to determine probabilistic transition values based on the knowledge base. Input to the DSS will be problems that arise during accelerator operation and output will be ranged list of the most probable solutions for the problems. System has 6 layers. Connection between layers is shown in figure 1. Concept scheme of the DSS is shown in figure 2.

INPUT PARAMETRES – INPUT LAYERS							\rightarrow	OUTPUT LAYERS – OUTPUT PARAMETERS					
Layer 6 (discrete function of input values ranges)							\rightarrow	Layer 6 (discrete function of output values ranges)					
	Layer 5 (4 nodes)						\rightarrow		Layer 5 (4 nodes)				
		Layer 4 (6 nodes)					\rightarrow		Layer 4 (10 nodes)				
			Layer 3 (~500 nodes))	\rightarrow	Layer 3 (~500 nodes)					
					Layer 2 (10 nodes)		\rightarrow	Layer 2	(8 nodes)		\rightarrow	\rightarrow	
						Layer 1	\rightarrow	Layer 1	\rightarrow	\rightarrow			
	Value	Dynamics	Parameter	Detector Nº	Problem	Sector		Sector	Solution	Device №	Parameter	Dynamics	Value
	Value	2 ynamoe	Signal amplitude						Colution		REnhase		
		·		MPS MPS MRC	Beam loss	1		1	Injector	Duoplasmatron	RF amplitude	+	
				BCT Wall detector	Current				RF	chopper, C1, C2	Voltage		
			Signal form	Pickup	Pulse length	2		2	LLRF	LLRF devices	Current		
			Duration	WS	Pulse form				Focusing	Current sources	Temperature	CONST	
		CONST		SEM-grid BCSM		3		3	system	I hermometry Vacuum gauge			
		VAR	Time delay	Luminophore	Time delay Frequency	4		4	Vacuum DAQ	Vacuum pump	Pressure	VAR _	
				Camera						Vacuum valve	Duration		
				MGC	Energy					Crate, plate			
		-	Setpoint Detector status	Synchronization ΔF _{beam} fault	Position	5 6 (MRC)		5	Beam instrumentation Dosimetry	server, *.vi Beam	Time delay Setpoint		
				ΔBCT _{IF} fault ΔBCT _{RADEX} fault	Profile					instrumentation devices			
				∆ИДТ _{IN-06} fault	Emittance			6 (MRC)		IC, ND MPS_MPS_MPC	Device status		
	Value	Dynamics	Parameter	Detector Nº	Parameter	Sector		Sector	System	Device №	Parameter	Dynamics	Value
						Layer 1	\rightarrow	Layer 1	\rightarrow				
					Lave	er 2	\rightarrow	Lav	/er 2	→	\rightarrow		
					Laver 3		\rightarrow		Laver 3		\rightarrow		
								Laver 4					
							\rightarrow						
	Layer 6							Layer 6					
INPUT PARAMETRES – INPUT LAYERS							\rightarrow	OUTPUT LAYERS – OUTPUT PARAMETERS					

Fig. 1. INR linac DSS connections scheme.

INR linac DAQ system

The INR linac data acquisition (DAQ) system is a software package based on the LabVIEW. It consists of DAQ sources running on servers, DAQ receivers running on client computers

and DAQ storage server

XXVI

RuPAC

Alushta

2021

Fig. 2. INR linac DSS concept scheme.

DAQ upgrade

Currently, INR linac DAQ system stores not all acquired data. System stores information about accelerator systems. Beam parameters are not stored automatically. For DSS data analysis software all beam parameters should be stored. Also new signals, which are constantly added for accelerator control, should be added to DAQ system. Examples of DAQ upgrade during last year are presented on figures 4-6.

DAQ servers' status control

Tomography control

Fig. 4. Online tomography software.

Fig. 6. Upgraded linac alarm software.

Focusing structure scheme

Beam loss dynamics

Fig. 5. Upgraded beam current and loss software.