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Abstract

Beam position monitors (BPMs) are widely used for beam
diagnostics in particle accelerators. Turn-by-turn (TbT)
beam centroid data provide a means to estimate performance-
critical accelerator parameters, like betatron frequency and
optical functions. Parameter estimation accuracy is heavily
related to TbT data quality. BPM faults might lead to erro-
neous estimation of accelerator parameters and should be
accounted for achieving accurate and reliable results. Sev-
eral anomaly detection methods for TbT data cleaning are
considered. Derived features of BPM signals along with
their robust dispersion estimation are used to Ćag faulty
BPM signals. Estimated contamination factor is used with
unsupervised learning methods (Local Outlier Factor and
Isolation Forest). Application of anomaly detection methods
for the VEPP-4M experimental TbT data is reported.

INTRODUCTION

The VEPP-4M storage ring [1] is equipped with 54 dual-
plane BPMs [2]. The system can provide TbT data with
resolution close to 20 µm. TbT data is acquired by excitation
of the circulating beam with impulse kickers. To improve
the reliability of optics inference, detection of anomalies in
BPM signals is required.

Anomaly detection is widely used for TbT data quality
control [3, 4]. Anomalies caused by BPM electronics fail-
ures might deteriorate the measurements quality of acceler-
ator parameters. To mitigate the efects of anomalies, robust
parameter estimators should be used. Flagged BPMs should
be excluded at the optics inference stage where itŠs possible.

Previously BPM signal quality was judged only based
on the frequency spread across BPMs during single data
acquisition. In this paper extended procedure of anomaly
detection at the VEPP-4M is described. This procedure
was tested on a large set of measurements and found to be
reliable. Results of anomaly detection and classiĄcation at
the VEPP-4M are reported.

ANOMALY DETECTION LOOP

A schematic view of the anomaly detection loop is shown
in Fig. 1. Usable signal length is limited by decoherence.
For frequency measurement, 1024 turns are used and 128

turns are used for amplitude and phase computation.
Each signal is split into several overlapping samples of

short lengths. This allows generating large data set. Several
diferent features are computed for each normalized sample.
These features are used as a measure of samples similarity.
Close samples are assumed to have close set of features.
Thus, signals with samples containing large deviations of
features can be Ćagged as anomaly candidates. In our case,
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Figure 1: Anomaly detection loop at the VEPP-4M.

eight diferent derived features were tested. Each feature is
also processed separately with a threshold detector. This
allows deĄning anomaly score for each signal as the number
of samples from a given signal with a feature value above the
deĄned threshold. Anomaly scores across diferent features
are combined to Ćag anomaly candidates and to estimate the
contamination rate of a given measurement. A combination
of threshold detectors performs well for anomaly detection in
both simulations and experimental data. Robust estimation
of feature spread allows to minimize the number of false
positive cases.

For known contamination rate, several unsupervised ma-
chine learning (ML) methods can be applied. Local Outlier
Factor [5] and Isolation Forest [6] techniques are used as
a second layer in anomaly detection. These methods are
applied directly to samples and in the feature space. Local
Outlier Factor was found to perform well in both cases, while
Isolation Forest worked better in feature space.

DERIVED FEATURES GENERATION

For normalized samples, several derived features can be
computed. These features are obtained directly from a sam-
ple or from a full sample matrix.

Maximum absolute amplitude value in a sample is com-
puted. This feature performs well for identiĄcation of spikes
in TbT signals. For each sample, the frequency of the largest
spectrum peak is computed. SigniĄcant frequency deviation
across samples might indicate an anomaly and is sensitive
to large spikes and noise. Fourier spectrum Ćoor level in a
given range of frequencies is used as a next feature. Samples
with large noise should have a large spectrum Ćoor level. A
selected range of frequencies is assumed to contain no large
peaks. Quasiperiodic decomposition reconstruction error is
used as a measure of how well a given sample is approxi-
mated by several harmonics. From the SVD decomposition
of the full sample matrix, the maximum absolute values of
SVD space modes are used. Sample noise is also estimated
using optimal SVD truncation [7]. Samples with anoma-
lies are assumed to have larger noise estimations. Hankel
Ąlter [8] is applied to each sample and a feature is generated
as a norm of the diference between Ąltered and original
sample. Robust PCA [9] is used on the full sample matrix.
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Corresponding column norms of the sparse part are used as
features. Mean current across BPMs can also be used as an
additional feature.

THRESHOLD DETECTORS

Based on a derived feature a simple threshold detector can
be constructed. To do this, the median value of sample fea-
tures is computed or another center tendency estimators can
be used. Biweight midvariance is used as a robust estimator
of dispersion. The median value is subtracted and absolute
values of features are used. Normalization is performed for
features and for dispersion estimation. Signal anomaly score
is deĄned the number of samples above certain threshold.
In practice, several dispersion values allow reliable separa-
tion of outliers. Five dispersion values were used for the
VEPP-4M case.

Thus, based on each feature, signals are assigned an
anomaly score. Results from all features are combined. If
several threshold detectors have zero Ćagged anomaly candi-
dates, TbT data is considered to be normal. Anomaly scores
across detectors are summed and BPMs with total anomaly
scores above the given threshold are Ćagged as anomaly can-
didates. The contamination rate for a single measurement is
estimated based on the Ćagged signals.

UNSUPERVISED DETECTORS

Local Outlier Factor and Isolation Forest methods are
used as an additional layer for anomaly detection. These
methods require the expected contamination rate.

The Local Outlier Factor is based on local density esti-
mation. We have tested this method for sample space and
derived feature space. It was found to perform well in both
cases. For sample space, its performance is inĆuenced by
the number of samples. Without splitting BPM signals into
a large number of smaller samples, the detection quality was
not satisfactory. Several restarts are used to obtain more
reliable results.

The Isolation Forest identiĄes anomalies by isolation. An
outlier can be isolated with a smaller number of partitions.
When applied to sample space, it was found to produce a
large number of false positive results. No such problem
was observed for feature space. A random sampling of fea-
tures with several restarts was used for both methods when
applied to features. Instead of using features for each sam-
ple, only the largest feature is selected and assigned to the
corresponding BPM signal.

ANOMALIES STUDY AT THE VEPP-4M

The above anomaly detection procedure was tested on
the VEPP-4M experimental TbT data. Several hundreds of
successive data acquisitions were analyzed. Typical exam-
ples of BPM signals with anomalies are shown in Fig. 2.
Such anomalies are caused by BPM electronics and appear
in both planes simultaneously. On average less than 1 % of
signals contain such anomalies at beam current in3 mA to
4 mA range and close to 2 % at 1 mA in the Ąrst 1024 turns.

Figure 2: Examples of spike anomalies in TbT signals.
Spikes appear in both planes.

In Fig. 3 an example of detected spike anomalies is shown
along with derived features for all BPMs. In this measure-
ment, two BPM signals contained spikes in the horizontal
plane. As it can be seen, corresponding sample features are
well separated from the rest of BPM signals by most of the
features. These BPMs were also Ćagged by ML methods.

Figure 3: Example of detected spike anomalies from sin-
gle measurement (top plots). Normalized features for all
BPMs (bottom plots). Positions of signals with anomalies
are indicated with lines.

Another type of anomalies were observed in both sim-
ulations and experimental data in the vertical plane. Sev-
eral BPM signals were systematically Ćagged by both layers.
These BPMs have small values of vertical � function (1.5 m).
And in combination with noise and coupling, they stand out
from the rest of BPMs. An example of such systematic
anomalies is show in Fig. 4. As it can be seen from feature
plots, these signals are separated from other BPMs. Sev-
eral other BPMs were systematically Ćagged only by ML
methods in the horizontal plane. For these cases, horizontal
� function is less than the vertical one. The accuracy of
estimated parameters (amplitudes and phases) is poor com-
pared with other BPMs. We exclude these BPMs from the
computation of � function based on phase measurement.
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Figure 4: Example of detected systematic anomalies from
single measurement (top plots). Normalized features for all
BPMs (bottom plots). Positions of signals with anomalies
are indicated with lines.

In Fig. 5 the results of 50 successive TbT measurements
are shown. BPMs with high counts correspond to systematic
anomalies. These BPMs are mostly Ćagged due to the ratio
of � functions. For the horizontal plane, two BPMs stand
out. In this case, BPMs are Ćagged only by ML methods
while feature detectors show no sign of anomalies. Normally,
since the estimated contamination rate is zero, in this case,
used ML methods do not Ćag any BPMs. But for this study,
we have allowed at least one BPM to have an anomaly. For
the vertical plane, both layers mostly Ćag BPMs in the ex-
perimental region, where the value of the vertical � function
is small compared to the horizontal one.

Figure 5: Flagged BPMs for 50 successive measurements.
BPMs with high counts correspond to systematic anomalies.

CONCLUSION

The anomaly detection procedure for BPM signals pro-
cessing at the VEPP-4M was extended. Several methods
based on derived features of samples generated from BPM
signals were tested. These features along with their robust
dispersion estimation have allowed to deĄne anomaly score
for BPM signals and to estimate the contamination rate of a
given TbT measurement. In combination with unsupervised
ML methods, this procedure provides reliable detection of
anomalies. An experimental study of anomalies in BPM
signals at the VEPP-4M was performed. It was found spike
anomalies appear in about 1 % of the signals in a single mea-
surement. Several BPMs were systematically Ćagged due
to diferent operation conditions. Further improvement and
a more detailed study of anomalies are planned in the new
season.
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