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Abstract 
Discrete optimization methods of dynamic systems are 

widely presented in the scientific literature. However, to 
solve various problems of beam dynamics optimization, it 
is necessary to create special optimization models that 
would take into account specifics of the problems under 
study. The paper proposes a new mathematical model that 
includes joint optimization of a selected (calculated) mo-
tion and an ensemble of perturbed motions. Functionals of 
a general form are considered, which make it possible to 
estimate various characteristics of a charged particle beam 
and the dynamics of the calculated trajectory. The optimi-
zation of a bundle of smooth and nonsmooth functionals is 
investigated. These functionals estimate both integral char-
acteristics of the beam as a whole and various maximum 
deviations of the parameters of the particle beam. The var-
iation of a bundle of functionals is given in an analytical 
form, that allows us to construct directed optimization 
methods. The selected trajectory can be taken, for example, 
as the trajectory of a synchronous particle or the center of 
gravity of a beam (closed orbit). We come to discrete mod-
els when we consider the dynamics of particles using trans-
fer matrices or transfer maps. Optimization problems can 
be of orbit correction, dynamic aperture optimization, and 
many other optimization problems in both cyclic and linear 
accelerators of charged particle beams. 

 INTRODUCTION 
 Discrete systems are becoming increasingly important 

in theory and practical application in optimal control and 
optimization problems [1-5]. This is due to the fact that 
many problems are described by discrete equations, since 
in practice information about the state of the process comes 
discretely, and control of the dynamic process is imple-
mented most often at discrete moments of time. The stand-
ard approach to the design of various control systems in-
volves the initial calculation of the selected motion and the 
subsequent study of perturbed motions using equations in 
deviations. This approach, however, does not always lead 
to the desired results. When analyzing perturbed motions, 
it turns out that their dynamic characteristics are not always 
satisfactory from one point of view or another. This is a 
consequence of the significant dependence of the perturbed 
motions on the selected motion. In this paper, a mathemat-
ical model is proposed that allows simultaneous optimiza-
tion of the selected motion and the ensemble of perturbed 
motions in discrete systems. In this case, the simultaneous 
optimization of smooth and nonsmooth functionals is con-
sidered. 

The classical formulations of optimal control problems 
in discrete systems are quite well known and studied [1]. 
These problems can be considered as tasks of single trajec-
tories control. Along with them, non-standard problems of 
the theory of optimal control are being developed. In par-
ticular, the control problems of ensembles of trajectories 
(beams) were considered under various cost functionals in 
continuous and discrete-time systems [2]. Further, non-
standard problems of joint optimization of program motion 
and perturbed motions in continuous systems [6, 7], as well 
as in discrete ones [3-5] were developed. The problems of 
simultaneous optimization of smooth and nonsmooth func-
tionals defined on a program motion and a beam of per-
turbed trajectories in continuous and discrete systems were 
further developed [8-10]. 

This article is devoted to the construction of new meth-
ods for optimizing the bundle of smooth and nonsmooth 
functionals in discrete systems.  

PROBLEM STATEMENT 
In this paper a dynamic system is described by the dis-

crete equations of the following type 

𝑥𝑥(𝑘𝑘 + 1) = 𝑓𝑓�𝑘𝑘, 𝑥𝑥(𝑘𝑘),𝑢𝑢(𝑘𝑘)�,              (1) 
𝑦𝑦(𝑘𝑘 + 1) = 𝐹𝐹�𝑘𝑘, 𝑥𝑥(𝑘𝑘), 𝑦𝑦(𝑘𝑘),𝑢𝑢(𝑘𝑘)�,    (2)   

𝑘𝑘 = 0, … ,𝑁𝑁 − 1, 

where 𝑥𝑥(𝑘𝑘) − 𝑛𝑛 − dimensional phase vector, character-
izing the state of the system, 𝑦𝑦(𝑘𝑘) −𝑚𝑚 − dimensional 
phase vector, 𝑢𝑢(𝑘𝑘) − 𝑟𝑟 − dimensional vector, 𝑓𝑓(𝑘𝑘) =
𝑓𝑓�𝑘𝑘, 𝑥𝑥(𝑘𝑘),𝑢𝑢(𝑘𝑘)� is 𝑛𝑛 −dimensional vector function, 
𝐹𝐹(𝑘𝑘) = 𝐹𝐹�𝑘𝑘, 𝑥𝑥(𝑘𝑘),𝑦𝑦(𝑘𝑘),𝑢𝑢(𝑘𝑘)� – 𝑚𝑚 − dimensional vector 
function. We suppose that 𝑓𝑓(𝑘𝑘)  is defined and continuous 
in Ω𝑥𝑥 × 𝑈𝑈(𝑘𝑘) by the arguments �𝑥𝑥(𝑘𝑘),𝑢𝑢(𝑘𝑘)� for 𝑘𝑘 = 1,𝑁𝑁����� 
along with their partial derivatives. We also assume that 
𝐹𝐹(𝑘𝑘) is defined and continuous in Ω𝑥𝑥 × 𝛺𝛺𝑦𝑦 × 𝑈𝑈(𝑘𝑘)  by the 
arguments �𝑥𝑥(𝑘𝑘), 𝑦𝑦(𝑘𝑘),𝑢𝑢(𝑘𝑘)� for 𝑘𝑘 = 1,𝑁𝑁����� along with 
their first and second partial derivatives. Here Ω𝑥𝑥 ⊂ 𝑅𝑅𝑛𝑛 , 
Ω𝑦𝑦 ⊂ 𝑅𝑅𝑚𝑚, 𝑈𝑈(𝑘𝑘)  –  a compact set in 𝑅𝑅𝑟𝑟 , 𝑘𝑘 = 1,𝑁𝑁�����. We sup-
pose that for a given vector  𝑢𝑢(𝑘𝑘),  the vector  𝑥𝑥(𝑘𝑘) and the 
vector  𝑦𝑦(𝑘𝑘) uniquely determine the phase state 𝑦𝑦(𝑘𝑘 + 1) 
of the perturbed particle at the 𝑘𝑘 −th step and vice versa, 
by 𝑦𝑦(𝑘𝑘 + 1) − the state of the perturbed particle at the pre-
vious step. 

    Equation (1) describes the dynamics of the selected 
motion. Equation (2) describes the perturbed motion. 

We assume, that  𝑥𝑥(0) = 𝑥𝑥0, (𝑥𝑥0 ∈ Ω𝑥𝑥 ⊂ 𝑅𝑅𝑛𝑛)  and the 
initial state of the system (2) is described by set 𝑀𝑀0 − a 
compact set of nonzero measure in 𝑅𝑅𝑚𝑚, the sequence of 
vectors {𝑢𝑢(0),𝑢𝑢(1), … ,𝑢𝑢(𝑁𝑁 − 1)} we will call control and 
denote 𝑢𝑢 for brevity, 𝑥𝑥 = {𝑥𝑥(0), 𝑥𝑥(1), … , 𝑥𝑥(𝑁𝑁)} =
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𝑥𝑥(𝑥𝑥0,𝑢𝑢) − the trajectory of selected motion corresponding 
to the control 𝑢𝑢 and the initial state 𝑥𝑥0, 𝑥𝑥(𝑘𝑘) =
𝑥𝑥(𝑘𝑘, 𝑥𝑥0,𝑢𝑢) − the state of the system at the step 𝑘𝑘, 𝑦𝑦 =
{𝑦𝑦(0), 𝑦𝑦(1), … ,𝑦𝑦(𝑁𝑁)} = 𝑦𝑦(𝑥𝑥,𝑦𝑦0,𝑢𝑢) − the trajectory of 
perturbed motion, 𝑦𝑦(𝑘𝑘) = 𝑦𝑦(𝑘𝑘, 𝑥𝑥, 𝑦𝑦0,𝑢𝑢) − the state of the 
system at the step 𝑘𝑘.  The set of trajectories 𝑦𝑦(𝑥𝑥,𝑦𝑦0,𝑢𝑢) cor-
responding to the initial state 𝑥𝑥0, the control 𝑢𝑢 and different 
initial states 𝑦𝑦0 ∈ 𝑀𝑀0 we will call a beam of trajectories or 
simply the beam. State of the beam at the  𝑘𝑘 −th step is the 
cross-section of trajectories ensemble denoted as 𝑀𝑀𝑘𝑘,𝑢𝑢 =
{𝑦𝑦(𝑘𝑘): 𝑦𝑦(𝑘𝑘) = 𝑦𝑦(𝑘𝑘, 𝑦𝑦0, 𝑥𝑥,𝑢𝑢),𝑦𝑦0 ∈ 𝑀𝑀0}. The controls satis-
fying conditions 𝑢𝑢(𝑘𝑘) ∈ 𝑈𝑈(𝑘𝑘), 𝑘𝑘 = 1,𝑁𝑁 − 1���������� we call ad-
missible.  

On the trajectories of the system (1)-(2), we introduce 
cost functionals that allow us to evaluate the dynamics of 
the calculated and perturbed motion and to carry out their 
joint optimization: 

𝐼𝐼1(𝑢𝑢) = ∑ 𝑔𝑔�𝑘𝑘, 𝑥𝑥(𝑘𝑘)� +𝑁𝑁−1
𝑘𝑘=1 𝑔𝑔(𝑁𝑁, 𝑥𝑥(𝑁𝑁)),       (3) 

𝐼𝐼2(𝑢𝑢) = max
𝑦𝑦(𝑁𝑁)∈𝑀𝑀𝑁𝑁,𝑢𝑢

Ф�𝑦𝑦(𝑁𝑁)�,                    (4) 

𝐼𝐼(𝑢𝑢) = 𝐼𝐼1(𝑢𝑢) + 𝐼𝐼2(𝑢𝑢).                        (5) 

Here   𝑔𝑔𝑘𝑘 =  𝑔𝑔�𝑘𝑘, 𝑥𝑥(𝑘𝑘)�, 𝑘𝑘 = 0,1, … ,𝑁𝑁 − 1 and  𝑔𝑔𝑁𝑁 =
𝑔𝑔(𝑁𝑁, 𝑥𝑥(𝑁𝑁)) continuously differentiable functions by  𝑥𝑥, 
 Ф(𝑦𝑦(𝑁𝑁)) – a non-negative continuously differentiable 
function with respect to 𝑦𝑦. 

We consider the problem of functional (5) minimization 
for all admissible controls.  

FUNCTIONAL VARIATION  
Let 𝑢𝑢 − admissible control. We will consider the follow-

ing variation of this control: 

𝑢𝑢�𝜀𝜀 = 𝑢𝑢 + 𝜀𝜀∆𝑢𝑢.                           (6) 

We suppose, that 𝑢𝑢�𝜀𝜀 is an admissible control, when 
𝜀𝜀𝜀𝜀[0, 𝜀𝜀)̅, 𝜀𝜀 ̅ > 0, in this case, we will call ∆𝑢𝑢 the permissi-
ble direction of the control variation. 

The trajectory increment at the 𝑘𝑘 −th step ∆𝑥𝑥(𝑘𝑘) =
𝑥𝑥�(𝑘𝑘, 𝑥𝑥0,𝑢𝑢�𝜀𝜀) − 𝑥𝑥(𝑘𝑘, 𝑥𝑥0,𝑢𝑢) and the trajectory increment of 
perturbed motion at the 𝑘𝑘 −th step ∆𝑦𝑦(𝑘𝑘) = 𝑦𝑦�(𝑥𝑥�,𝑦𝑦0,𝑢𝑢�𝜀𝜀) −
𝑦𝑦(𝑥𝑥,𝑦𝑦0,𝑢𝑢), for control in Eq. (6), can be represented as [1] 

∆𝑥𝑥(𝑘𝑘 + 1) = 𝜀𝜀𝜀𝜀𝑥𝑥(𝑘𝑘 + 1) + 𝑜𝑜(𝜀𝜀), 

∆𝑦𝑦(𝑘𝑘 + 1) = 𝜀𝜀𝜀𝜀𝑦𝑦(𝑘𝑘 + 1) + 𝑜𝑜(𝜀𝜀), 

where 𝑘𝑘 = 1,𝑁𝑁����� and variations 𝜀𝜀𝑥𝑥 и 𝜀𝜀𝑦𝑦 satisfy the equa-
tions [10]: 

𝜀𝜀𝑥𝑥(𝑘𝑘 + 1) = 𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑥𝑥(𝑘𝑘)

𝜀𝜀𝑥𝑥(𝑘𝑘) + 𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑢𝑢(𝑘𝑘)

∆𝑢𝑢(𝑘𝑘),        (7)                                          

𝜀𝜀𝑦𝑦(𝑘𝑘 + 1) = 𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑥𝑥(𝑘𝑘)

𝜀𝜀𝑥𝑥(𝑘𝑘) + 𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑦𝑦(𝑘𝑘)

𝜀𝜀𝑦𝑦(𝑘𝑘) + 𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑢𝑢(𝑘𝑘)

∆𝑢𝑢(𝑘𝑘),(8)          

𝑘𝑘 = 0, … ,𝑁𝑁 − 1. 

At the same time, the initial conditions take place  
𝜀𝜀𝑥𝑥(0) = 0  and 𝜀𝜀𝑦𝑦(0) = 0. 

The increment of the functional in Eq. (5) can be written 
as  

𝐼𝐼(𝑢𝑢�𝜀𝜀) − 𝐼𝐼(𝑢𝑢) = 𝜀𝜀𝜀𝜀𝐼𝐼 +  𝑜𝑜(𝜀𝜀) = 𝜀𝜀𝜀𝜀𝐼𝐼1 + 𝜀𝜀𝜀𝜀𝐼𝐼2 +  𝑜𝑜(𝜀𝜀), (9) 

where 𝜀𝜀𝐼𝐼1 − functional (3) variation, 𝜀𝜀𝐼𝐼2 − functional (4) 
variation,  𝜀𝜀𝐼𝐼 − functional (5) variation. 

Variation of the Functional 𝐼𝐼1(𝑢𝑢) 
We write out a variation of the functional (3) using Eq. 

(7). We get 

𝜀𝜀𝐼𝐼1 = ∑ 𝜕𝜕𝑔𝑔𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

𝜀𝜀𝑥𝑥𝑘𝑘 + 𝜕𝜕𝑔𝑔𝑁𝑁
𝜕𝜕𝑥𝑥𝑁𝑁

𝜀𝜀𝑥𝑥𝑁𝑁𝑁𝑁−1
𝑘𝑘=1 . 

Variation 𝜀𝜀𝐼𝐼1 can be converted to the form  

𝜀𝜀𝐼𝐼1 = ∑ �𝛽𝛽𝑇𝑇(𝑘𝑘 + 1) 𝜕𝜕𝜕𝜕�𝑘𝑘,𝑥𝑥(𝑘𝑘),𝑢𝑢(𝑘𝑘)�
𝜕𝜕𝑢𝑢(𝑘𝑘)

� ∆𝑢𝑢(𝑘𝑘),𝑁𝑁−1
𝑘𝑘=0      (10) 

using the following auxiliary vector functions  

𝛽𝛽𝑇𝑇(𝑁𝑁) = 𝜕𝜕𝑔𝑔𝑁𝑁
𝜕𝜕𝑥𝑥𝑁𝑁

, 

𝛽𝛽𝑇𝑇(𝑘𝑘) = 𝛽𝛽𝑇𝑇(𝑘𝑘 + 1) 𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑥𝑥(𝑘𝑘)

+ 𝜕𝜕𝑔𝑔𝑘𝑘
𝜕𝜕𝑥𝑥(𝑘𝑘)

,         (11) 

𝑘𝑘 = 1, … ,𝑁𝑁 − 1. 

Variation of the Functional 𝐼𝐼2(𝑢𝑢) 
We write down a variation of the functional 𝐼𝐼2(𝑢𝑢) 

𝜀𝜀𝐼𝐼2 = max
𝑦𝑦0∈𝑌𝑌0(𝑢𝑢)

�𝜕𝜕Ф(𝑦𝑦𝑁𝑁)
𝜕𝜕𝑦𝑦𝑁𝑁

𝜀𝜀𝑦𝑦𝑁𝑁�, 

where 𝑌𝑌0(𝑢𝑢) is defined as follows [10]: 

𝑌𝑌0(𝑢𝑢) = �𝑦𝑦0 ∈ 𝑀𝑀0:Ф�𝑦𝑦(𝑁𝑁)� =

Ф(𝑦𝑦(𝑁𝑁, 𝑥𝑥(𝑥𝑥0,𝑢𝑢), 𝑦𝑦0,𝑢𝑢)) = max
𝑦𝑦𝑁𝑁∈𝑀𝑀𝑁𝑁,𝑢𝑢

Ф(𝑦𝑦𝑁𝑁) �. 

The variation of the functional 𝐼𝐼2(𝑢𝑢), using equations 
(8), can be converted to the form 

𝜀𝜀𝐼𝐼2 = max
𝑦𝑦0∈𝑌𝑌0(𝑢𝑢)

�� �𝜉𝜉𝑇𝑇(𝑘𝑘 + 1)
𝜕𝜕𝑓𝑓�𝑘𝑘, 𝑥𝑥(𝑘𝑘),𝑢𝑢(𝑘𝑘)�

𝜕𝜕𝑢𝑢(𝑘𝑘) +
𝑁𝑁−1

𝑘𝑘=0

 

𝛾𝛾𝑇𝑇(𝑘𝑘 + 1) 𝜕𝜕𝜕𝜕�𝑘𝑘,𝑥𝑥(𝑘𝑘),𝑦𝑦(𝑘𝑘),𝑢𝑢(𝑘𝑘)�
𝜕𝜕𝑢𝑢(𝑘𝑘)

� ∆𝑢𝑢(𝑘𝑘)�,          (12) 

using the following vector functions 

𝜉𝜉𝑇𝑇(𝑁𝑁) = 0,      𝛾𝛾𝑇𝑇(𝑁𝑁) = 𝜕𝜕Ф(𝑦𝑦𝑁𝑁)
𝜕𝜕𝑦𝑦𝑁𝑁

, 

𝜉𝜉𝑇𝑇(𝑘𝑘) = 𝛾𝛾𝑇𝑇(𝑘𝑘 + 1) 𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑥𝑥(𝑘𝑘)

+ 𝜉𝜉𝑇𝑇(𝑘𝑘 + 1) 𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑥𝑥(𝑘𝑘)

 , (13) 
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𝛾𝛾𝑇𝑇(𝑘𝑘) = 𝛾𝛾𝑇𝑇(𝑘𝑘 + 1) 𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝑦𝑦(𝑘𝑘)

, 

𝑘𝑘 = 1, … ,𝑁𝑁 − 1. 

Variation of the Functional 𝐼𝐼(𝑢𝑢) 
Let us consider the functional 𝐼𝐼(𝑢𝑢). It follows from Eq. 

(9) and Eq. (10), Eq. (12) that the variation of the func-
tional 𝐼𝐼(𝑢𝑢), using auxiliary functions (11), (13), can be rep-
resented as          

𝜀𝜀𝐼𝐼2 = max
𝑦𝑦0∈𝑌𝑌0(𝑢𝑢)

�∑ �𝜉𝜉𝑇𝑇(𝑘𝑘 + 1) 𝜕𝜕𝜕𝜕�𝑘𝑘,𝑥𝑥(𝑘𝑘),𝑢𝑢(𝑘𝑘)�
𝜕𝜕𝑢𝑢(𝑘𝑘)

+𝑁𝑁−1
𝑘𝑘=0   

𝛽𝛽𝑇𝑇(𝑘𝑘 + 1)
𝜕𝜕𝑓𝑓�𝑘𝑘, 𝑥𝑥(𝑘𝑘),𝑢𝑢(𝑘𝑘)�

𝜕𝜕𝑢𝑢(𝑘𝑘) + 

𝛾𝛾𝑇𝑇(+1) 𝜕𝜕𝜕𝜕�𝑘𝑘,𝑥𝑥(𝑘𝑘),𝑦𝑦(𝑘𝑘),𝑢𝑢(𝑘𝑘)�
𝜕𝜕𝑢𝑢(𝑘𝑘)

� ∆𝑢𝑢(𝑘𝑘)�.            (14) 

Thus, expression (14) gives us an analytical representa-
tion of the variation of the functional. On the basis of this 
representation, it is possible to build effective optimization 
methods taking into account the dynamics of program mo-
tion and perturbed motions. This may be important when 
optimizing the dynamics of charged particles in linear and 
cyclic accelerators.  

CONCLUSION 
When optimizing only the functional 𝐼𝐼1(𝑢𝑢), the control 

choice does not depend on the perturbed movements, and 
they do not affect this choice. When optimizing the func-
tional 𝐼𝐼2(𝑢𝑢) we see from Eq. (12) that the controls depend 
on both the selected motion and the perturbed motions, and 
only the "worst" particles are taken into account in the per-
turbed motions. When studying the functional 𝐼𝐼(𝑢𝑢), equal 
to the sum of the functionals 𝐼𝐼1(𝑢𝑢) and 𝐼𝐼2(𝑢𝑢), we simulta-
neously optimize both the dynamics of the selected motion 
and the dynamics of perturbed motions, namely, we esti-
mate the dynamics of the "worst particles", i.e. the greatest 
deviations from the selected motion. This approach can be 
effective in solving various problems of optimizing the dy-
namics of charged particles in accelerators and beam for-
mation systems [8, 9, 11]. We especially note the problems 
and the need to optimize the dynamic aperture (DA) in cy-
clic accelerators and colliders [12, 13]. The proposed ap-
proach makes it possible to construct new optimization 
methods. Note that DA is understood as the deflection (in 
the 𝑥𝑥 or 𝑦𝑦 plane) of the particle that is most distant from 
the center of the beam (from the trajectory of the central 
particle), but at the same time remains within the aperture 
of the accelerator channel. The definition of DA directly 
implies the need to optimize the dynamics of the "worst 
particle" in the beam, which leads to a functional of type 
(4). We also note that transfer matrices or transfer maps can 
be used to obtain discrete equations of particle dynamics 
[14]. 
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