|
- S.M. Polozov, A.E. Aksentyev, M.M. Bulgacheva, O.V. Deryabochkin, M.S. Dmitriyev, V.V. Dmitriyeva, M.V. Dyakonov, V.S. Dyubkov, A.V. Gerasimenko, A.A. Gorchakov, M. Gusarova, M.A. Guzov, E.N. Indiushnii, A.M. Korshunov, K.I. Kozlovskiy, A.S. Krasnov, M.V. Lalayan, Y. Lozeev, T.A. Lozeeva, A.I. Makarov, S.V. Matsievskiy, A.P. Melekhov, O.V. Murygin, R.E. Nemchenko, G.G. Novikov, A.E. Novozhilov, A.S. Panishev, V.N. Pashentsev, A.G. Ponomarenko, A.V. Prokopenko, V.I. Rashchikov, A.V. Samoshin, A.A. Savchik, V.L. Shatokhin, A.E. Shikanov, K.D. Smirnov, G.A. Tsarev, S.A. Tumanov, I.A. Yurin, M.I. Zhigailova
MEPhI, Moscow, Russia
- M.L. Smetanin, A.V. Telnov
VNIIEF, Sarov, Russia
- N.V. Zavyalov
RFNC-VNIIEF, Sarov, Nizhniy Novgorod region, Russia
|
|
|
At the moment, the National Research Nuclear University (MEPhI) is developing an injector for an accelerator of light ions with an energy of 7.5 MeV / nucleon. The injector uses several tens of quadrupole magnets with a magnetic field gradient of 6-18 T / m and several units of dipole magnets. Key requirements for quadrupole magnets include large aperture, compact transverse dimensions, uniform shape and design, ease of fabrication from a manufacturing standpoint, field accuracy within 0.1%, and low power consumption. This article will describe the requirements, simulation results, and preliminary designs for quadrupole and dipole magnets.
|
|