Author: Paramonov, V.V.
Paper Title Page
MOPSA06 Parameters of the Normal Conducting Accelerating Structure for the Up to 1 GeV Hadron Linacs 142
 
  • I.V. Rybakov, A. Feschenko, L.V. Kravchuk, V.V. Paramonov, V.L. Serov
    RAS/INR, Moscow, Russia
 
  Compensated bi-periodic accelerating structure Cut Disk Structure (CDS) was developed for accelerating particle beams at beta eq 1. In the papers dedicated to the development of this structure, a significant decrease in Ze was shown for medium energies range, beta 0.4-0.5. For high-intensity hadron linacs, this energy range, in which particles are captured to acceleration from the drift tube structure, is of the greatest interest. In this paper, a set of CDS parameters was obtained, which provides a Ze value not lower in the comparison to the proven structures in the medium energy range. By the comparison of the electrodynamic and technological parameters of CDS with these structures, the advantages of its application in multi-section cavities for the up to 1 GeV linacs are shown. The selection of optimal cells manufacturing tolerances, the method of its tuning before brazing and frequency parameters control, and the selection of the method for multipactor discharge suppression are determined. The results of the sketch project of the CDS cavity numerical simulation as a non-uniform coupled system and optimization of the transition part of sections and bridge devices are presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-MOPSA06  
About • Received ※ 22 September 2021 — Revised ※ 28 September 2021 — Accepted ※ 07 October 2021 — Issued ※ 16 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPSA41 Effect of a Proton Beam from a Linear Accelerator for Radiation Therapy 182
 
  • L. Ovchinnikova, S.V. Akulinichev, A.P. Durkin, A. Kolomiets, V.V. Paramonov
    RAS/INR, Moscow, Russia
  • A. Kurilik
    Private Address, Moscow, Russia
  • L. Ovchinnikova
    Ferrite Domen Co., St. Petersburg, Russia
 
  Linear accelerators can provide beam characteristics that cannot be achieved by circular accelerators. We refer to the concept of a compact linac for creating a proton accelerator with a maximum energy of 230 MeV, operating in a pulsed mode. The linac is designed to accelerate up to 1013 particles per 10 to 200 seconds irradiation cycle and is capable of fast adjustment the output energy in the range from 60 to 230 MeV, forming a pencil-like beam with a diameter of ~2 mm. Simulation of dose distribution from a proton beam in a water phantom has been performed. The radiological effect of the linac beam during fast energy scanning is considered, and the features for providing the high dose rate flash radiation therapy are specified. The possibility of a magnetic system for increasing the transverse dimensions of the beam-affected region is discussed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-MOPSA41  
About • Received ※ 28 September 2021 — Accepted ※ 09 October 2021 — Issued ※ 13 October 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPSC01 Unit for Matching a Driving Waveguide With a Cavity 340
 
  • V.V. Paramonov
    RAS/INR, Moscow, Russia
 
  To match the driving waveguide, usually operating in the fundamental TE10 wave, with the accelerating structure, a device is required that performs the function of a wave-type transformer. In the microwave region, transforming devices with matching windows are usually used, the field distribution in which can also be described as TE-type. At the ends of the window from the side of the structure, regions with an increased density of Surface Currents (SC) inevitably arise, leading to an increase in the surface temperature in a place that is difficult to access for cooling. There are various solutions for matching windows, in order to reduce the maximum SC from the side of the structure , briefly mentioned in the report. A solution based on the dispersion properties of the waveguide and providing a significant additional decrease in the SC density is considered. This solution can be implemented in devices for S and lower frequency ranges.  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-WEPSC01  
About • Received ※ 06 September 2021 — Revised ※ 20 September 2021 — Accepted ※ 24 September 2021 — Issued ※ 22 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRB04 A Linear Accelerator for Proton Therapy 117
 
  • V.V. Paramonov, A.P. Durkin, A. Kolomiets
    RAS/INR, Moscow, Russia
 
  For applications in proton therapy, linear accelerators can provide beam performances not achievable with cyclic facilities. The results of the development of a proposal for a linac with the maximal proton energy of 230 MeV are presented. Operating in a pulsed mode, with a repetition rate not less than 50 Hz, the linac is designed to accelerate up to 1013 protons per irradiation cycle lasting from 10 to 200 seconds. Possibilities of fast, from pulse to pulse, adjustment of the output energy in the range from 60 MeV to 230 MeV, formation and acceleration to the output energy of a "pencil-like" beam with a diameter of ~ 2 mm are shown. Optimized solutions, proposed for both the accelerating-focusing channel and the technical systems of the linac make it possible to create a facility with high both target and technical and economic features. Special attention, due to the selection of proven in long-term operation parameters of the systems, is paid to ensuring the reliability of the linac operation. The feasibility of linac is substantiated on the basis of mastered or modified with a guarantee industrial equipment.  
slides icon Slides FRB04 [5.370 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-FRB04  
About • Received ※ 16 September 2021 — Revised ※ 30 September 2021 — Accepted ※ 09 October 2021 — Issued ※ 13 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)