Author: Kolomiets, A.
Paper Title Page
MOPSA41 Effect of a Proton Beam from a Linear Accelerator for Radiation Therapy 182
 
  • L. Ovchinnikova, S.V. Akulinichev, A.P. Durkin, A. Kolomiets, V.V. Paramonov
    RAS/INR, Moscow, Russia
  • A. Kurilik
    Private Address, Moscow, Russia
  • L. Ovchinnikova
    Ferrite Domen Co., St. Petersburg, Russia
 
  Linear accelerators can provide beam characteristics that cannot be achieved by circular accelerators. We refer to the concept of a compact linac for creating a proton accelerator with a maximum energy of 230 MeV, operating in a pulsed mode. The linac is designed to accelerate up to 1013 particles per 10 to 200 seconds irradiation cycle and is capable of fast adjustment the output energy in the range from 60 to 230 MeV, forming a pencil-like beam with a diameter of ~2 mm. Simulation of dose distribution from a proton beam in a water phantom has been performed. The radiological effect of the linac beam during fast energy scanning is considered, and the features for providing the high dose rate flash radiation therapy are specified. The possibility of a magnetic system for increasing the transverse dimensions of the beam-affected region is discussed.  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-MOPSA41  
About • Received ※ 28 September 2021 — Accepted ※ 09 October 2021 — Issued ※ 13 October 2021  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRB04 A Linear Accelerator for Proton Therapy 117
 
  • V.V. Paramonov, A.P. Durkin, A. Kolomiets
    RAS/INR, Moscow, Russia
 
  For applications in proton therapy, linear accelerators can provide beam performances not achievable with cyclic facilities. The results of the development of a proposal for a linac with the maximal proton energy of 230 MeV are presented. Operating in a pulsed mode, with a repetition rate not less than 50 Hz, the linac is designed to accelerate up to 1013 protons per irradiation cycle lasting from 10 to 200 seconds. Possibilities of fast, from pulse to pulse, adjustment of the output energy in the range from 60 MeV to 230 MeV, formation and acceleration to the output energy of a "pencil-like" beam with a diameter of ~ 2 mm are shown. Optimized solutions, proposed for both the accelerating-focusing channel and the technical systems of the linac make it possible to create a facility with high both target and technical and economic features. Special attention, due to the selection of proven in long-term operation parameters of the systems, is paid to ensuring the reliability of the linac operation. The feasibility of linac is substantiated on the basis of mastered or modified with a guarantee industrial equipment.  
slides icon Slides FRB04 [5.370 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-FRB04  
About • Received ※ 16 September 2021 — Revised ※ 30 September 2021 — Accepted ※ 09 October 2021 — Issued ※ 13 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)