Author: Kliuchevskaia, Yu.D.
Paper Title Page
MOPSA08 Beam Dynamics Simulation in a Linear Electron Accelerator - Injector for the 4th Generation Specialized Synchrotron Radiation Source USSR 149
 
  • I.A. Ashanin, Yu.D. Kliuchevskaia, S.M. Polozov, A.I. Pronikov
    MEPhI, Moscow, Russia
  • I.A. Ashanin, S.M. Polozov, A.I. Pronikov
    NRC, Moscow, Russia
 
  USSR project (Ultimate Source of Synchrotron Radiation, 4th generation synchrotron light source) is being developed in the NRC «Kurchatov Institute». This Light Source will include both storage ring and soft FEL (Free Electron Laser) and one linac with an energyof 6 GeV, which is planned to be used both for beam injection into storage ring (top-up injection) and as a high-brightness bunch driver for FEL. It is suggested to use two front-ends in this linac: RF-gun with thermionic cathode with adiabatic buncher for injection into storage ring and RF-gun with photocathode will use to generate a bunch train for FEL. The purpose of this work was to development a general layout of the top-up linac with the aim of minimize of the beam energy spread and transverse emittance at the exit and analysis the front-to-end beam dynamics in this linear accelerator.  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-MOPSA08  
About • Received ※ 29 September 2021 — Revised ※ 30 September 2021 — Accepted ※ 07 October 2021 — Issued ※ 09 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPSB43 Optimization of the RF-Gun With Photocathode at Operating Frequency 2800 MHz for the New Injection Linac for USSR Project 319
 
  • Yu.D. Kliuchevskaia, S.M. Polozov
    MEPhI, Moscow, Russia
  • S.M. Polozov
    NRC, Moscow, Russia
 
  The beam dynamics analysis of the RF-gun with photocathode for Russian 4th generation light source Ultimate Source of Synchrotron Radiation (USSR-4) was done to chose the optimal length of the section and cell’s number and also to define optimal accelerating gradient and injection phase. The simulation of electrodynamics parameters and RF field distribution in the RF-gun based on 3.5-, 5.5- and 7.5-cell pi-mode standing wave accelerating structure at operating frequency 2800 MHz was done. The influence of the beam loading effect on the field amplitude and beam dynamics was the main purpose of study also. The beam dynamics simulation results will present in the report and optimal RF-gun parameters will discuss.  
DOI • reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-TUPSB43  
About • Received ※ 15 September 2021 — Revised ※ 29 September 2021 — Accepted ※ 09 October 2021 — Issued ※ 23 October 2021
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)