Paper | Title | Page |
---|---|---|
TUY01 | VEPP-2000 Collider Complex Operation in 2019-2021 Runs | 28 |
|
||
VEPP-2000 is the only electron-positron collider operating with a round beam permitting to increase the limit of beam-beam effects. VEPP-2000 is the compact collider with 24.4 m-circumference which has record luminosity at energy up to 1 GeV per bunch (1032 1/cm2s), magnetic fields in superconducting solenoids (13 T) and in the bending magnets (2.4 T). Collider complex experimental program of 2019-2021 was focused on several energy ranges per bunch. Energy range in the second half of 2019 was 180-300 MeV, in the first half of 2020 ¿ 935-970 MeV, in the first half of 2021 - 970-1003.5 MeV. Data taking was carried out by CMD-3 and SND detectors and operation efficiency is compared with previous runs. Luminosity was limited by beam-beam effects. 2021 year was clouded by vacuum accident and subsequent intensive degassing using beam synchrotron radiation. | ||
![]() |
Slides TUY01 [2.449 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-TUY01 | |
About • | Received ※ 11 October 2021 — Accepted ※ 13 October 2021 — Issued ※ 23 October 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUA02 | Current Status of VEPP-5 Injection Complex | 37 |
|
||
VEPP-5 Injection Complex (IC) supplies VEPP-2000 and VEPP-4 colliders at Budker Institute of Nuclear Physics (BINP, Russia) with high energy electron and positron beams. Since 2016 the IC has shown the ability to support operation of both colliders routinely with maximum positron storage rate of 1.7·1010 e+/s. Stable operation at the energy of 430 MeV has been reached. Research on further improvements on the IC performance is carried out. In particular control system was improved, additional beam diagnostics systems were developed, monitoring of RF system was upgraded. In this paper, the latest achieved IC performance, operational results and prospects are presented. | ||
![]() |
Slides TUA02 [2.966 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-TUA02 | |
About • | Received ※ 28 September 2021 — Revised ※ 01 October 2021 — Accepted ※ 09 October 2021 — Issued ※ 11 October 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUB04 | Development of the Electron Cooling System for NICA Collider | 48 |
|
||
The high voltage electron cooling system for the NICA collider is now under development in the Budker Institute of Nuclear Physics (Russia). The aim of the cooler is to increase ion beams intencity during accumulation and to decrease both longitudinal and transverse emmitances of colliding beams during experiment in order to increase luminosity. Status of its development and results of tests of the cooler elements are described in the article. | ||
![]() |
Slides TUB04 [16.028 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-TUB04 | |
About • | Received ※ 04 October 2021 — Accepted ※ 09 October 2021 — Issued ※ 24 October 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WED01 |
Problems of Beam Diagnostics on the 4th Generation of Synchrotron Light Sources | |
|
||
A new synchrotron light source SKIF of the 4th generation is under construction at BINP (Novosibirsk, Russia). The parts of the installation are linear accelerator providing the electron energy of 200 MeV, booster-synchrotron at 3.5 GeV beam energy and storage ring with circumference of 476 m and projected emittance of 75 pm. The paper describes beam diagnostics, which will be applied for linac tuning and measurements of the beam parameters in the booster and storage ring. The set of beam diagnostics includes scintillating screens, beam position monitors, current transformers, magnetic spectrometer for the energy range from 0.6 to 200 MeV, and optical diagnostics based on acquisition of optical synchrotron radiation. Brief description of the design, parameters and foreseen physical and technical problems of each diagnostics system is presented. The comparison with other 4th generation synchrotron light sources is done. | ||
![]() |
Slides WED01 [5.015 MB] | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |