JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for WEPSC36: Simulation of the Coherent Radiation Interferometry for the Beam Temporal Structure Diagnostics

@inproceedings{shkitov:rupac2021-wepsc36,
  author       = {D.A. Shkitov and M. Shevelev and S. Stuchebrov and M. Toktaganova},
  title        = {{Simulation of the Coherent Radiation Interferometry for the Beam Temporal Structure Diagnostics}},
% booktitle    = {Proc. RuPAC'21},
  booktitle    = {Proc. 27th Russ. Part. Accel. Conf. (RuPAC'21)},
  eventdate    = {2021-09-27/2021-10-01},
  pages        = {413--416},
  eid          = {WEPSC36},
  language     = {english},
  keywords     = {radiation, detector, simulation, electron, target},
  venue        = {Alushta, Crimea},
  series       = {Russian Particle Accelerator Conference},
  number       = {27},
  publisher    = {JACoW Publishing},
  location     = {Geneva, Switzerland},
  date         = {2021-10},
  month        = {10},
  year         = {2021},
  issn         = {2673-5539},
  isbn         = {978-3-95450-240-0},
  doi          = {10.18429/JACoW-RuPAC2021-WEPSC36},
  url          = {https://jacow.org/rupac2021/papers/wepsc36.pdf},
  abstract     = {{Today, free electron lasers and new facilities that are capable of generating sequences of short electron bunches with a high (THz) repetition rate have widely developed. The existing diagnostic methods for such sequences have limitations or are not applicable. Therefore, it is important to develop new approaches to diagnose the temporal structure of such sequences (trains) in modern accelerators. In this report, we describe a model of coherent radiation interferometry using a Michelson interferometer. The mechanisms of transition and diffraction radiation are selected as the radiation source. The model takes into account the finite target size, the parameters of the sequence structure and the detector characteristics. The simulation results allow us to conclude that the analysis of the radiation intensity autocorrelation function itself can be applied as diagnostics method of an arbitrary bunch train temporal structure. Based on such method we can obtain information on the bunch number in the train and the distance between bunches.}},
}