Optimization of electron beam quality in a laser-driven plasma accelerator with external injection at SINBAD for ATHENA

Elena Svystun, Ralph Assmann, Ulrich Dorda, Barbara Marchetti, Maria Weikum

Deutsches Elektronen-Synchrotron DESY

XXVI Russian Particle Accelerator Conference October 1–5 2018, Protvino, Moscow Region, Russia

Outline

Potential experimental setup for laser-driven plasma acceleration with external injection:

2D simulations with the PIC code OSIRIS Start-to-end simulations with the PIC code FBPIC

- Emittance growth mitigation by tailoring the longitudinal density profile of the plasma entrance and exit with smooth vacuum-plasma and plasma-vacuum transitions (realistic plasma ramp profile)
- ✓ 3D simulations with the full 6D beam distributions
- Tolerance studies on the arrival time jitter between the electron beam and the external laser.

SINBAD: <u>Short Innovative Bunches and Accelerators at DESY</u>

Dedicated accelerator R&D facility

✓ SINBAD will host multiple, independent accelerator R&D experiments

ATHENA: <u>Accelerator Technology HEImholtz iNfrAstructure</u>

A new R&D platform focusing on accelerator technologies and drawing on the resources of 7 Helmholtz centers

- ATHENA provides the infrastructure required for bringing compact and cost-effective plasma accelerators to user readiness.
- Flagship projects will be set up in Hamburg (electrons -ATHENA_e) and Dresden (hadrons - ATHENA_h).
- Applications for science, medicine and industry will be developed in all centers.
- ✓ **ATHENA**_e flagship will be hosted at SINBAD.

ATHENA_e @ SINBAD

Simulation parameters

SINBAD-ARES-linac

Normal conducting S-band electron linac for the production of ultra-short bunches Single pulse @ 50Hz. Arrival time jitter stability < 10 fs RMS

	WP1 - I≭	WP1 - II≭≭
Charge [pC]	0.7	0.75
Energy [MeV] (incl. Bunch compression)	99.7	99.9
Relative energy spread [%]	0.38	0.19
σ_{z} (RMS) [μ m]	0.238 (0.79 fs)	0.15 (0.5 fs)
σ_{x} (RMS) [μ m]	5.0	0.7
σ_{y} (RMS) [μ m]	5.3	0.7
Normalized transverse emittance, $\varepsilon_{n,x}$ [µm]	0.138	0.09
Normalized transverse emittance, $\varepsilon_{n,y}$ [µm]	0.144	0.1
$\beta_x / \beta_y \text{ [mm]}$	33.7 / 38.2	1 / 0.99

DESY. RuPAC'18 | LWFA with external injection for ATHENAe | Elena Svystun, 02.10.2018

ANGUS laser

- ✓ α₀ = 1.8;
- ✓ τ_l = 25 fs (FWHM);
- ✓ w₀ = 42.47 µm;
- ✓ 196.2 TW power;
- ✓ 5.2 J energy;
- ✓ repetition rate of 5 Hz

★J. Zhu et al., NIMA 829, 229 (2016)
★★ J. Zhu, Ph.D. thesis (2017)

Simulation parameters

Plasma channel:

- ✓ with a radially parabolic density profile of the form $n(r)=n_0+\Delta n(r/r_{ch})^2$,
- \checkmark the channel depth $\Delta n=0.626n_{\theta}$,
- ✓ the channel width r_{ch} = 42.47 µm,
- ✓ the on-axis plasma density $n_0 = 10^{17}$ cm⁻³.
- Density up-ramp length: 1 cm;
- ✓ Acceleration region length : 9.5 cm;
- ✓ Density down-ramp length: 1 cm.

♦ Simulation window (OSIRIS) :

- ✓ 134.44 × 537.75 [µm²] and 100.82 × 420.12 [µm²];
- ✓ Resolution: 0.0127 μ m × 0.98 μ m;
- ✓ Yee field solver (Yee FS).

- **Simulation window (FBPIC) :**
- ✓ 118 × 420 [µm²];
- ✓ Resolution: 0.0222 μ m × 0.5 μ m;
- Spectral field solver;
- ✓ Boosted frame, γ_{bf} = 5.

Longitudinal density profile of the plasma entrance and exit

Case 1

Realistic plasma target density profile simulated with OpenFOAM (C. Thornton) [solid line] and a piecewise polynomial fit of the up- and down-ramp [dashed lines] to be used for particle-in-cell simulations of a realistic plasma ramp shape. Case 2

$$f(z) = \frac{1}{\left(1 \pm (z - z_{0,d|u})/l_{d|u}\right)^2},$$

 $z_{0,u}$ and $z_{0,d}$ are the longitudinal coordinates of the start of the up-ramp and the down-ramp respectively;

 l_{u} and l_{d} are the optimized characteristic scale lengths of the plasma ramps given by

$$l_{d|u} = \beta_{p0} \sqrt{\left(\frac{\pi}{\ln(\beta_{goal}/\beta_i)}\right)^2 + \frac{1}{4}} = \frac{L_{d|u}}{\beta_{goal}/\beta_i - 1}$$

 β_{p0} is the beta function of the matched electron beam in PBAs,

 $\beta_{p0} = \sqrt{\gamma_b c m_e/(ge)};$

 γ_b is the beam Lorentz factor;

g is the transverse focusing field in the plasma;

 β_i is the initial beta function of the beam;

 β_{goal} is the matched beta function of the beam;

 L_u and L_d are the lengths of the plasma up-ramp and the down-ramp respectively.

M. Weikum, Ph.D. thesis (2017).

X.L. Xu et al., Phys. Rev. Lett., 116 124801 (2016).

OSIRIS code

OSIRIS framework

- ✓ Massivelly Parallel, Fully Relativistic Particle-in-Cell (PIC) Code
- Developed by the osiris.consortium: UCLA + IST

UCLA OSITIS 3.0

http://epp.tecnico.ulisboa.pt/ http://plasmasim.physics.ucla.edu/

Code features:

- ✓ Scalability to ~ 1.6 M cores
- Hybrid MPI/OpenMP parallelized
- SIMD hardware optimized
- ✓ Parallel I/O
- ✓ Dynamic Load Balancing
- ✓ QED module
- Particle merging
- ✓ GPGPU support
- ✓ Xeon Phi support

Main limitations in 2D simulations of LWFA with external injection:

- ✓ the read-in of full 6D beam distributions in 2D is not available ⇒ initial symmetric Gaussian distribution of the injected beam in coordinate and momentum;
- ✓ Numerical Cherenkov radiation (NCR) with the Yee FS;
- ✓ In the NCR-suppressing FS (Lehe FS) the laser group velocity is higher than the speed of light ⇒ numerical electron beam-laser dephasing;
- Beam loading effect is stronger than in 3D simulations.

Evolution of the electron beam properties (WP1 - I)

Plasma ramps: case 1, electron beam-laser offset = $52.79 \mu m$

Evolution of the electron beam properties (WP1 - I)

Current distribution, longitudinal and transverse phase-spaces of the accelerated electron beam (WP1 - I)

Plasma ramps: case 1, electron beam-laser offset = $52.79 \mu m$

After extraction from the plasma:

Electron beam parameters (WP1 - I)

Parameters	at the plasma entrance	after acceleration		
Plasma ramp		Case 1	Case 2	
Electron beam-laser offset [µm]		52.79	52.79	63.43
Charge [pC]	0.7	0.7	0.7	0.7
Energy [MeV]	99.2	963	941.2	1169.6
Relative energy spread [%]	0.376	0.428	0.381	0.315
σ_{z} (RMS) [as]	780	866	830	829
σ_{x} (RMS) [μ m]	5.1	2.86	4.5	5.6
Normalized transverse emittance, $\varepsilon_{n,x}$ [µm]	0.14	$0.41 (z = 6 \text{ cm}) 2.5^* (z = 11.5 \text{ cm})$	5.1*	8.4*

*due to numerical Cherenkov radiation.

FBPIC code

Open source electromagnetic Particle-In-Cell code

Quasi-3D geometry

3D accuracy at 2D costs.

Spectral electromagnetic solver

- Highest precision
- No numerical artifacts

Boosted frame

- Accelerate simulations by orders of magnitude
- Instability-free solver

Highly parallel & written in Python

- CUDA GPU acceleration
- Multi-GPU domain decomposition

R. Lehe et al., Comput. Phys. Commun. 203, 66-82 (2016).

High accuracy spectral solver

Spectral solvers mitigate the common numerical errors of traditional simulation codes

S. Jalas et al., Phys. Plasmas 24, 033115 (2017).

Stability of Lorentz-boosted frame simulations

A novel method enables stable boosted frame simulations

Boosted frame technique

- Orders of magnitude speed up of simulations
- Application was limited by severe instability
- New solver intrinsically eliminates the instability

new instability-free method numerical Cherenkov instability

M. Kirchen et al., Phys. Plasmas 23, 100704 (2016).

Evolution of the electron beam properties (WP1 - I)

Plasma ramps: case 2, electron beam-laser offset = 52.79 μm

Evolution of the electron beam properties (WP1 - I)

Plasma ramps: case 2, electron beam-laser offset = $52.79 \ \mu m$

Properties of the accelerated electron beam (WP1 - I)

Plasma ramps: case 2, electron beam-laser offset = $52.79 \ \mu m$

Before injection into the plasma:

Properties of the accelerated electron beam (WP1 - I)

Plasma ramps: case 2, electron beam-laser offset = $58.1 \mu m$

Before injection into the plasma:

Properties of the accelerated electron beam (WP1 - I)

Plasma ramps: case 2, electron beam-laser offset = $63.43 \mu m$

Before injection into the plasma:

Electron beam parameters (WP1 – I)

Parameters	at the plasma entrance*	after acceleration		
Plasma ramp		Case 2		
Electron beam-laser offset [µm]		52.79	58.1	63.43
Charge [pC]	0.7	0.7	0.7	0.7
Energy [MeV]	99.7	928	1065.7	1140.7
Relative energy spread [%]	0.38	0.747	0.357	0.287
σ_{z} (RMS) [μ m]	0.238	0.32	0.3	0.28
$\sigma_{\rm x}$ (RMS) [μ m]	5.0	2.8	2.7	2.58
σ_{y} (RMS) [μ m]	5.3	2.2	2.15	2.15
Normalized transverse emittance, $\varepsilon_{n,x}$ [µm]	0.138	0.48	0.42	0.41
Normalized transverse emittance, $\varepsilon_{n,y}$ [µm]	0.144	0.31	0.29	0.28

0.05

-0.05

10.62

10.58

10.6

× [mm]

Evolution of the electron beam properties (WP1 - II)

Plasma ramps: case 2, electron beam-laser offset = $52.79 \mu m$

Evolution of the electron beam properties (WP1 - II)

Plasma ramps: case 2, electron beam-laser offset = $52.79 \mu m$

Properties of the accelerated electron beam (WP1 - II)

Plasma ramps: case 2, electron beam-laser offset = $52.79 \mu m$

Before injection into the plasma:

Evolution of the electron beam properties (WP1 - II)

Plasma ramps: case 2, electron beam-laser offset = $58.1 \mu m$

Evolution of the electron beam properties (WP1 - II)

Plasma ramps: case 2, electron beam-laser offset = $58.1 \mu m$

40

60

z [mm]

80

100

120

Divergence, X [mrad]

60

z [mm]

80

100

120

40

20

0

0

C

0

20

40

60

z [mm]

80

100

120

 b^{2} 0.5 0.5 0.5 0.5 0.5 0.0999 0.0998 0.09970.0

Properties of the accelerated electron beam (WP1 - II)

Plasma ramps: case 2, electron beam-laser offset = $58.1 \mu m$

Before injection into the plasma:

Properties of the accelerated electron beam (WP1 - II)

Plasma ramps: case 2, electron beam-laser offset = $63.43 \mu m$

Before injection into the plasma:

Electron beam parameters (WP1 - II)

Parameters	at the plasma entrance*	after acceleration		
Plasma ramp			Case 2	
Electron beam-laser offset [µm]		52.79	58.1	63.43
Charge [pC]	0.75	0.75	0.75	0.75
Energy [MeV]	99.9	925	1065.2	1143
Relative energy spread [%]	0.19	0.28	0.15	0.25
σ_{z} (RMS) [μ m]	0.15	0.17	0.17	0.165
$\sigma_{\rm x}$ (RMS) [μ m]	0.7	2.2	1.8	1.32
σ_{y} (RMS) [μ m]	0.7	2.0	1.6	1.15
Normalized transverse emittance, $\varepsilon_{n,x}$ [µm]	0.09	0.09	0.09	0.09
Normalized transverse emittance, $\varepsilon_{n,y}$ [µm]	0.1	0.1	0.1	0.1

Summary

- The successful quality-preserving acceleration of an externally injected beam by a laser wakefield accelerator was demonstrated through the start-to-end 3D PIC simulations.
- Electron beam properties are preserved during the acceleration and extraction.
- A good working point has been found for the potential experimental setup for laser-driven plasma acceleration with external injection of an electron beam from an RF linac.
- The effect of the injection phase on the accelerated beam quality has been investigated through tolerance studies on the arrival time jitter between the electron beam and the external laser:
 - time jitter ≤ 35.5 fs does not have a significant influence on the final parameters of the accelerated electron beam.

Parameters	at the plasma entrance	after acceleration		
Electron beam-laser offset [µm]		52.79	58.1	63.43
Charge [pC]	0.75	0.75	0.75	0.75
\overline{E} [MeV]	99.9	925	1065.2	1143
$\Delta E/\overline{E}$ [%]	0.19	0.28	0.15	0.25
σ_{z} (RMS) [μ m]	0.15	0.17	0.17	0.165
σ_{x} (RMS) [μ m]	0.7	2.2	1.8	1.32
σ_{y} (RMS) [μ m]	0.7	2.0	1.6	1.15
<i>ε_{n,x}</i> [μm]	0.09	0.09	0.09	0.09
<i>ε_{n,y}</i> [μm]	0.1	0.1	0.1	0.1
$10^{-1}_{0.5} \\ 10^{-1}_{0.5$				

Acknowledgements

> the OSIRIS Consortium (IST/UCLA) for providing access to the OSIRIS code.

developers of the FBPIC: Remi Lehe (Berkeley Lab) and Manuel Kirchen (CFEL, UHH); also Soeren Jalas (CFEL), Kevin Peters (CFEL), Irene Dornmair (CFEL) and Igor Andriyash (Weizmann Institute).

