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= Abstract

The possibility of steady acceleration of particles in the
= presence in a tube of drift of a foil which plane is paral-
lel to an axis is studied. For calculation of the field the
o method of conformal transformations is used. Conditions
= of simultaneous acceleration with stability of the cross and
£ longitudinal movement are found out.
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INTRODUCTION

For focusing of bunches of heavy charged particles fo-
cusing by grids - the folga located along an axis which
plane is parallel to an axis of the accelerating system is of-
fered (see [1]). For studying of properties in the real work
the simplest option of such system is considered - the foil

settles down on a drift tube axis, and influence of a foil will

be studied in flat geometry that gives the chance for calcu-

lation of the field to apply a method of conformal transfor-
mations.

THE FIELD IN A STRIP WITH A CUT

Method of conformal transformations. Let z = = +
1y, w = u + iv. Transformation
w—i—ia:gln(l—e%) @)
T

transfers a strip with a cut to 2z planes in a strip without cut
in w plane. At this transformation

a 27z
=—1In(l—2e« a 2
u 2ﬂ_n( e cos( )+e ), 2)
blnﬂ
v = _e arctanwi _ ¢ 3)
T e~ e —cos™

The straight line of y = +a,—00 < x < +00 passes
g in half line v = —a,0 < u < 400, top coast of drift
2y = 0,r < 0 meets to half line v = —a,—0c0 < u < 0.
5 Borders of the accelerating interval [0, 5] meets to [a, (]
Ewhere a = 2In2,8 = 2In(1 + e+?). Particle moves
3 along axes z in negative direction. Length of tube drift
S d are d >> a, where a-an aperture. Actual width of
a foil as it will be visible from expression for the field
£ on an axis, can be about a/7 because of exponential de-
< crease of the field. As boundary conditions we will put:
& Ey(z,a) = f(x), [ = Epoxc(b— z). Here o(x) - the
£ Heaviside function. Components of the potential field E

rms of the CC BY 3.0 licence © 2018). Any distributlon of thls work must maintain attrib

under the t

Se

ay be

ork

is

[
9
=}
=
-+
=
o
=
2]
=
=}
=
=
o
=i
g
-+
=}
I
g
=
o
(¢}
-+
=
o
=
»n
o
=
2
(¢}
o,
c
<
—_
=
[S)

complaining way:
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where
Cou_ v (™) —exp(Seos()
ox Oy 1 — 2exp(Z2) cos(ZL) + exp( 2L )( )
__Ou_0Ov _ exp(7F) sin(¥)
Oy Ox  1—2exp(™2)cos(™2) + exp(2EL)
(6)

We will pass, further, from boundary conditions for F,
to boundary conditions for F,.. Using ratios 1.4-1.6 for
E.(x,a) we will find :

Ly

Bulw,0) = (1= exp(=2%)

g(u) = o(u—a)o(f —u)(7)

We will find, further, field components in w plane. From

cosh(kv)

cosh(ka) (®)

- iﬂ//dkdu’g(u')exp{ik(u —u')}

and for F, we have:

sinh(kv)
2m//dkzdu g(u') exp{ik(u —u )}cos h(k ),(9)

Integrals in (1.8) and (1.9) can be expressed in elementary
functions. Using (1.4) it is possible to calculate E,(z,0)
and Ey(x,0). E;(z,0) # 0 only at z > 0, whereas E,, #0
only at x <0. When transforming (1.1) this half shaft
passes into v = 0. From (1.5) for definition of E,(x,0)
to know E,, (u, 0). We will finally receive :

1 1 Vite® —1v2+1
Ez(‘rao):_—{ =z In b \/5_1
\/ea—l \/1+e 1

+2 arctan“ e —arctanq/ = 1>

(10)

For definition of E, (z, 0) needs to find F, (u, —a). Can be
received:

E,(x,0) =

LR S, <\/1+e’if’— \f+1>

Wi
_11 \/ \/1—6 \/_—F\/l—ewf
7Tn<\/ TVl \f+m>
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THE FOCUSING ACTION OF A GRID

Let charged particle fly from a point with x = oo to a
point with x = —oo at a >> y > 0. Further, we will con-
sider that the external field changes under the sinusoidal
law, i.e. force operating on a particle is defined by a vector
E(x(t), y(t)) cos(wt + ¢). The movement of the nonrela-
tivistic particle are described by two equations:

%mi‘ = By (a(t), y(t)) cos(wt + ¢),

d

Emy = Ey(z(t),y(t)) cos(wt + ¢) (2)

The longitudinal movement is steady if steady solution of
the equation

(M

e OF,

q:E ox

where ¢ = x — x5 (x5 - coordinate a basis of a particle,
x - the coordinate of the displaced particle). The equation
(2.3) is steady if

cos(wt + @)gq, 3)

> OF,
——— cos(wt > 0.
/_Oo o cos(wt + ¢)
The increment of a longitudinal impulse when passing ac-
celerating interval a has to be positive, i.e.

“4)

ma = e/_oo Ey(x(t),y(t)) cos(wt + ¢) > 0. (5)

We will demand, further, that y < 0, if particle flies upper
axis and y > 0, if the particle flies below an axis. Be-
cause of antisymmetry of F, for y these requirements are
compatible Execution them results in stability in the cross
direction.

my = e/ Ey(x.y) cos(wt + ¢) < 0. (6)
Below will be found area of phases ¢, where conditions

(2.4), (2.5), (2.6) are executed at the same time. We will
enter new variables:

€: %ﬂ?: %7
al an al an
Ev;(@’?) = Ey(?7 ?),Eg(@’?) = Ew(?7 ?)

also we will designate p = 2. Conditions (2.4), (2.5),
(2.6) will take the following form (taking into account that

t=—7:

/°° OE¢(&:n)

s oslpE — 9)de

(N

— 00

i /_ Ee(6,) sin(pé — @)dé < 0,

mé =S [ Belen) costpe ~ )de > 0. ®
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mi= 2 [ By costp — 0)ig > 0. ©)

For calculation of integrals we will use analyticity of func-
tion of E (¢ + in) = E¢ + iE,, which follows from equal-
ities VE = 0, nabla x E = 0. We will consider a contour
C, formed by a trajectory of a particle, axis = 0 and
closed on F-c0.

From ratios [,,(E¢ + iE,e™'P*®)d() =0 can be re-
ceived

| Beneosoe—ope = o

costilpn) [ Be(€.0) cos(pé — 0)de -

siub(pn) [, (6,0)sinlp€ — o)

| et —aae= an

coshipn) | E,(6,0)cos(pg ~ 6)d¢ +
siuh(pn) [~ Fe(e,0)sin(o — )dg

We will consider further that the parameter of p = % <<
1. From a type of expressions (1.10) and (1.11) follows
what can be put:

/O Ee(€,0) sin(pe)dé = —pK,
/O Ee(€,0) cos(pé)de = —L
0

| Eae0)sinterde = —pir,

0
| Ee0costpe)a = .

where the sizes K,L,M,N are positive. Simultaneous per-
formance of conditions (2.7), (2.8), (2.9) determines the
following area of values ¢:

3 M K
Eﬂ - arctan(%) >¢>m+ arctan(p?).

(12)

3

At p —0 this area passes in 5+ > ¢ > . The area of
rather great values of p is characterized by existence of the
impulse directed from an axis. l.e. steady acceleration is
possible at rather big speeds of particles.

CONCLUSION

In work the field in a difficult configuration is calculated
and the area of steady acceleration of charged particles is
defined.
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