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Abstract

The present report is devoted to covariant description
of the microcanonical distributions for a charged particle
beam on the base of the covariant approach previously de-
veloped in the works of the author.

For microcanonical distribution, particles are distributed
on some ellipsoid, representing three-dimensional surface
in the four-dimensional phase space.

Goal of this work is to analyze how do particles are dis-
tributed on the surface of this ellipsoid It means that we
concerned with particle density on that surface. Besides,
we investigate evolution of the density in time to verify that
spatial two-dimensional density in projection of the ellip-
soid onto configuration space remains uniform.

Our approach is distinct from previously used common
approach, according to which microcanonical distribution
is described by the delta-function, and particle distribution
on the ellipsoid is not considered.

INTRODUCTION

Microcanonical distribution for charged particle beam
was firstly introduced in 1959 by Soviet physicists
Kapchinsky and Vladimirsky [1] (see also [2]) and in our
days is well known as Kapcinsky-Vladimirsky (KV) distri-
bution.

Microcanonical distribution is widely applied in acceler-
ator design as powerful tool for simulating of a charged
particle beam of high intensity when particle interaction
cannot be neglected.

Common desription of the microcanonical distribution is
not quite correct from mathematical point of view because
the mathematical expression for its phase density contains
delta-function [2], which support is a point, while the sup-
port of the microcanonical distribution is three-dimensional
surface of an ellipsoid in the four-dimensional phase space.
In particular, such description does not allow to set ini-
tial distributions of particles for computer simulation of the
beam.

Here we apply the covariant approach developed in the
works [3, 4, 5, 6] for description of the microcanonical dis-
tribution. Covariant approach give us an opportunity to de-
scribe the distributions and to follow their evolution using
various systems of coordinates in the phase space.

According to this approach, particle density is described
by a differential form which degree is equal to dimension
of support of the distribution.
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If particles distributed in some region in the phase space,
then dimension of their support is equal to dimension of the
phase space and density of such distribution is described by
a differential form of top degree, containing product of dif-
ferentials of all coordinates. If support of a distribution is a
surface in the phase space, then degree of the density form
is less than dimension of the phase space, and such form
can be written as a term containing only product of dif-
ferentials of coordinates introduced on this surface. Most
degenerate case is the case when particles are situated in
some points of the phase space. In this case we should
use density of a point-like measure which is specified by a
scalar function, i.e., differential form of zero degree.

From this point of view, it is clear that microcanonical
distribution should be described by a density specified on
3-dimensional surface of the ellipsoid, and this density is a
form of 3 degree.

INTEGRALS OF PARTICLE MOTION IN
LINEAR TRANSVERSE FIELD

Consider stationary charged particle beam in transverse
electric field which is linear in transverse cartesian coordi-
nates x and y

Ey =kyx, Ey=kyy. (1)
Assume that particles of the beam move with the same lon-
gitudinal velocity, and that at initial cross-section of the
beam particles fill a four-dimensional ellipsoid in phase
space of transverse motion

XTBOlea X*:(%xa%y)

Consider most common case By = [|b%|, b%, = b2,. If
bgy # 0, one can take other cartesian coordinates related
with the old ones with orthogonal transformation in which
bgy = 0 (new coordinates are also regarded here as x, and
y. Let introduce an assumption that bgy = 0, bg’y = 0,
bgﬂ) = 0. Therefore, further we will consider the matrix of
the form

B0 b2, 0 0
BO = (I)x 896 bO bO . (2)
vy vy
0 0 B, B

Assume also that equations of the transverse motion are
linear:

d?z

dt?

d?y

= —Qqx, W

= —Qyy. 3
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2 Then at each subsequent instant ¢ particles fill ellipsoid
XTt)Bt)X(t) =1,

B(t) = (FT)"'(t,to)BoF " (t,t0) = 1, 4)

here F' is matrix Green function of the system of linear

uations of the transverse motion (3). It is easy to see

at if equation of the particle motion have form (3), matrix
t) has also form (2).

Assume that particles fill uniformly interior of the ellipse

£

ms—'g

which is projection of the ellipsoid onto plane & = 0, y =
0:
2 2
i + yf — ]_7
Rz RZ

where R, , are semi-axes of the ellipse. Furter we shall
see that this assumtion is confirmed also. Calculating the
force acting on a particle from uniformly charged cylinder
of elliptical cross-section we will see that

e A
r — *kx + S b b
@=0 R.(R, + R,)
e A
= —k _—
Q= R TRy

£

here )\ is a coefficient depending on the beam current.
herefore, assumption that transverse force is linear is con-
rmed, if B(t) changes sufficiently slowly.

To find beam envelopes, consider optimization problem

= =

x(t) = max, y(t) = max, XT(t)B{t)X(t)=1,

Solving this problem, one can find that

Rz = xmax(t) = Ba?:rl (t)v (5)

Ry = ymax(t) = szyl(t)- (6)

Differentiating right sides of the expressions (5), (6), and
U considering motion along y-axis analogously, one can find
£ that the envelopes R, and R, = Ymax(t) satisfy the equa-
3 tions
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E dt2x - QQCR + R3a (7)
(]

=

5 2R s2

E R L R3’ ®)
ol

]

where S; = RyoVz0, Sy = RyoVyo. Pairs of systems of
2 equatlons for z, R, and for y, Ry form the Ermakov sys-
Ztems [7]. Their integrals, known also as Courant-Snyder
~ invariants [8], are

o 52
I? = (zR, — #R,)* + Féx2, )

. , 52
Ij = (yR, — yR,)* + R—ng.

Y

(10)
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COVARIANT DESCRIPTION OF
MICROCANONICAL DISTRIBUTION

Let introduce coordinates ¢, ¢, 0 on surface of the el-
lipsoid: (4)

r = R, cosy, cosb, (11)

Vg = sz — &R, = E,sinp, cosf, (12)
y = R, cosp,sind, (13)

y == yR —yRy = Eysinp, sin 6. (14)

Substituting expressions (11)—(14) into (9),(10) one can
see that € is integral of motion.

Here we applied the covariant approach developed in
works [3, 4, 5, 6], according to which distribution densities
in the phase space are described by the differential form of
various degrees satisfying to the Vlasov equation.

Let particles are distributed on surface of the ellipsoid
(4) with the density

Ngpi, 8 APz N dpy N db. (15)
Let us find such n,,, ¢ that distribition of particles in
projection of the ellipsoid to the plane z, y is uniform:

const, 2?/R2+y?/R; <1,
Ny (T,y) =
0, 2?/R2 +y* /RS > 1.

From the other hand, one can take z, y, v, as coordinates
on surface of the ellipsoid. Density component in these
coordinates can be obtained from relation

oz Jdy Ovg
Opy  Ops  Opa

det oz Jy Ovg ‘ —

ntpzépye = OQayv, Opy Opy Opy
oz dy vy
00 o0 a0

= Nuyv, - ReRyEy - |sing,| - | cos 0] sin” 6.

Expressing sin ¢,, through these coordinates we have

246in2 0 — 42
singy| = 1 - y22 _ \/Rysin® 0 —y .
RZsin”0

R, |sin |
Then
Vg xx;ax(a:7y)
nxy(z, y) = Ozyv, dvgy =
— Vg max(way)
Vo max (T,Y)
N, ©yb dUI

R, E, R281nt9 y? |sm0(:050|.

—Vz max(T,Y)

Let

Npp, = No|sin 6 cos 6. (16)
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Then
Uwznax($7y) d
N AV
Y R.E. R,
—Vz max(T,Y)
1 ™o
X = = =R
V- G2 = (G- () faly
Therefore the density component 0y, 4,6

no|sinfcos@| specifies uniform in the beam cross-
section distribution. When particles move along beam
axis, ny,,,0 conserves as it depends only on motion
integral 6.

To prove this strictly, substitute the density (16) into the
Vlasov equation, which can be applied for degenerate dis-
tributions when it is written in the form [3, 4, 5, 6]

n(t+5t,Ff5tq) = Ff75tn(t,q). a7n
Here F 5; denotes the Lie dragging of a point of the phase
space or some tensor object along vector field f by the pa-
rameter increment 0t [9]. The vector field f here is defined
by the dynamics equations (3).

In some coordinates specified on the surface where par-
ticle moves, equation (17) takes the form

on

5 = —Ln(t,q).

(18)
Here £ ; denotes the Lie derivative along vector field f [9].
In coordinates ., ¢,, 0 equation (18) reduces to the
equation
ot 06’
and is satisfied, obviously. Therefore, assumption made be-
fore that particles are uniformely distributed inside ellipse

22 Y2
x Yy
is confirmed.
CONCLUSION

So we can see that covariant approach allow us to de-
scribe correctly microcanonical distributions. We can find
how the particle density on the surface of the ellipsoid de-
pends on coordinates. Also we can describe evolution of
this density in time. As we have obtained, this density is
depends only on such function of coordinates which is in-
tegral of motion and, therefore, conserves. From practical
point of view such approach give us an opportunity to sim-
ulate the microcanonical distribution setting initial distri-
bution on the surface of the ellipsoid.

The results can be useful in many applied problems, for
example, problems of optimization of beam transport chan-
nel.
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