THE JINR FLNR HEAVY ION CYCLOTRON COMPLEX – PRESENT STATUS AND FUTURE

<u>B.N.Gikal</u>, S.L.Bogomolov, G.G.Gulbekian, S.N.Dmitriev, I.V.Kalagin, Yu.Ts.Oganessian,

Flerov Laboratory of nuclear reactions, JINR, Dubna, Russia

FLNR's BASIC DIRECTIONS of RESEARCH

<u>U-400 cyclotron (⁴⁸Ca, ⁵⁰Ti 5-6 MeV/n)</u>

- Heavy and superheavy nuclei:
- > synthesis and study of properties of superheavy elements;
- > chemistry of new elements;
- Fusion-fission and multi-nucleon transfer reactions;
- > nuclear- , mass-, & laser-spectrometry of SH nuclei.

U-400M cyclotron (light ions ~50 MeV/n)

- Light exotic nuclei:
- > properties and structure of light exotic nuclei;
- reactions with exotic nuclei.

IC-100 (C ÷ Bi 1 MeV/n), U-400 (Ar ÷ Bi 3.5-5 MeV/n)

- Radiation effects and physical groundwork of nanotechnology.

U400 Cyclotron (1978)

Axial injection system of U-400 Cyclotron

Axial injection system of U-400 Cyclotron

Buncher system of U-400

The magnification ratio of the intensity

Phase length of bunch, which is captured in the acceleration $-20-40^{\circ}$ from 360°.

Influence of space charge

11 µA

K = 4.8

4,9 µA

К = 2,1

20 µA

K = 8,7

Heavy Ion Beam Extraction by Stripping Foil

Thickness of stripping foil – 20 -200 μ g/cm²

Heavy Ion Beam Extraction by Stripping Foil Charge spread

Dependence of the maximum efficiency of a single charge extraction by stripping versus the ion energy

- New heavy isotopes
- Fusion-fission
- Nuclear spectroscopy
- > SHE chemistry
- Multi nucleon transfer reactions;
- Reactions with exotic nuclei
- Structure of light exotic nuclei;

U400 CYCLOTRON stand-alone & post-accelerator

Ion	Ion energy [MeV/A]	Output intensity
⁴ He ¹⁺	-	-
⁶ He ¹⁺	11	3.10 ⁷ pps
⁸ He ¹⁺	7.9	-
¹⁶ O ²⁺	5.7; 7.9	5 рµА
¹⁸ O ³⁺	7.8; 10.5; 15.8	4.4 pµA
⁴⁰ Ar ⁴⁺	3.8; 5.1 *	1.7 рµА
⁴⁸ Ca ⁵⁺	3.7; 5.3 *	1.2 рµА
⁴⁸ Ca ⁹⁺	8.9; 11; 17.7 *	1 pµA
⁵⁰ Ti ⁵⁺	3.6; 5.1 *	0.4 pµA
⁵⁸ Fe ⁶⁺	3.8; 5.4 *	0.7 pµA
⁸⁴ Kr ⁸⁺	3.1; 4.4 *	0.3 рµА
136 Xe ¹⁴⁺	3.3; 4.6; 6.9 *	0.08 pµA
¹⁶⁰ Gd ¹⁹⁺	5.5	0.01 pµA
²⁰⁹ Bi ¹⁹⁺	3.4	0.01 pµA

Efficiency of transporting a ⁴⁸Ca⁵⁺ beam from the ECR source to a physical target

Measuring point	Beam int	Ion		Trans	missior	n factor	•	
ECR source, after separation	1·10 ¹⁴ pps	84 µAe	⁴⁸ Ca ⁵⁺	32%				
Cyclotron centre	3.5·10 ¹³ pps	27 µAe	⁴⁸ Ca ⁵⁺		81%			
Extraction radius	2.8·10 ¹³ pps	22 µAe	⁴⁸ Ca ⁵⁺			40%		
Extracted beam (by charge exchange)	9.7·10 ¹² pps	28 µAe	⁴⁸ Ca ¹⁸⁺				82%	
Target	8-10 ¹² pps	23 µAe	⁴⁸ Ca ¹⁸⁺					8.5%

Ionization efficiency of ⁴⁸Ca (neutral) to ⁴⁸Ca⁵⁺ - about 10%

• Transformation of ⁴⁸Ca as working substance into the ⁴⁸Ca beam on target is about 1% in routine operation. ¹⁰

DUBNA Gas Filled Recoil Separator

May 2011: Approval of the discovery of new elements 114 and 116

International Union of Pure and Applied Chemistry *May 2012:* Official approval of the name *Flerovium* for element *114* and the name *Livermorium* for element *116*

30th December 2015:

Approval of the discovery of new elements 113, 115, 117, and 118

Priority for the discovery is assigned to:

- element 113: RIKEN (Japan)
- elements 115 and 117: JINR (Dubna) LLNL (USA) ORNL (USA) collaboration
- element 118: JINR (Dubna) LLNL collaboration

8th June 2016:

Provisional recommendations for naming elements 113, 115, 117, 118

8th November 2016:

A five-month public review expires.

The formal approval by the IUPAC Bureau is expected thereafter

The U-400M heavy ion cyclotron (1991)

U-400M. New ion sources and axial injection system

U400M CYCLOTRON stand-alone & driving accelerator

Main setup:

Fragment separator ACCULINNA-2

Main tasks:

- Producing of RIBs.
- Reactions with exotic nuclei;
- Properties and structure of light exotic nuclei;

U400M E=30 ÷ 50 MeV/A E=4.5 ÷ 9 MeV/A								
Ion	Ion energy [MeV/A]	Output intensity						
⁷ Li	35	6×10 ¹³						
¹⁸ O	33	1×10 ¹³						
⁴⁰ Ar	40	1×10 ¹²						
⁴⁸ Ca	5	6×10 ¹²						
⁵⁴ Cr	5	3×10 ¹²						
⁵⁸ Fe	5	3×10 ¹²						
¹²⁴ Sn	5	2×10 ¹¹						
¹³⁶ Xe	5	4×10 ¹¹						
238U	7	2×10 ¹⁰						

U-400M. Ion beam extraction by charge exchange method

Thickness of stripping foil - 20 -200 μg/cm²

New experimental set-ups at U400M

TOTAL OPERATION TIME OF U-400 AND U-400M ACCELERATORS

The main task of the FLNR Seven-Year Plan for 2017–2023 is the full implementation of the DRIBs-III Project, namely:

- Commissioning and development of "Superheavy Elements (SHE) Factory" based on the DC-280 cyclotron (design parameters of beams with smoothly variable energy; attaining maximum beam intensity (up to 10 pµA) for nuclei with A≤100; development of infrastructure for accommodation and use of experimental set-ups of other research centers);
- Reconstruction of the U-400 cyclotron and building of a new experimental hall (extension of the range of accelerated ions from helium to uranium with energies smoothly varying within a wide range 0.8–25 MeV·A);
- 3. Reconstruction of the U-400M cyclotron (production of intensive beams of radioactive ions, advancing toward the boundaries of proton and neutron stability of nuclei; conduct of research of nuclear interactions with maximum proton and neutron excess, employing the new powerful ACCULINNA-II separator);
- 4. Development of long-running experimental set-ups.

SHE factory:

Superheavy Elements (SHE) Factory

New experimental hall

> Why new cyclotron ?

<u>DC-280</u>

Overall (ion source \rightarrow extraction radius) beam current transfer efficiency

DC-280 Cyclotron

Heavy Ion Beam Extraction by Stripping Foil

Dependence of the maximum efficiency of a single charge extraction by stripping versus the ion energy Dependence of life time of carbon stripping foil versus beam current density 1 pµA = 1 eµA / $Z_{ion} \cong 6 \cdot 10^{12}$ pps

SHE-factory: High-current cyclotron DC-280

Main setups:

GFS (synthesis), GFS (chemistry), SHELS

Main tasks:

- Synthesis of SHE.
- Properties and Spectroscopy of SHE;
- Chemistry of SHE;
- Searching for new reactions leading to SHE

]	DC280 (expected) E=4÷8 MeV/A								
Ion	Ion energy [MeV/A]	Output intensity [pps]							
⁷ Li	4	1×10 ¹⁴							
¹⁸ O	8	1×10 ¹⁴							
⁴⁰ Ar	5	6×10 ¹³							
⁴⁸ Ca	5	0,6-1,2×10 ¹⁴							
⁵⁴ Cr	5	2×10 ¹³							
⁵⁸ Fe	5	1×10 ¹³							
¹²⁴ Sn	5	2×10 ¹²							
¹³⁶ Xe	5	1×10 ¹⁴							
238U	7	5×10 ¹⁰							

Main Parameters of DC-280 cyclotron

Ion source	DECRIS-4 - 14 GHz DECRIS-SC3 - 18 GHz
Injecting beam potential	Up to 100 kV
A/Z range	4÷7
Energy	4÷8 MeV/n
Magnet pole diameter	4 m
Magnetic field level	0.6÷1.35 T
K factor	280
Valley/hill gap	500/208 mm/mm
Gap between plugs	400 mm
Magnet weight	1000 t
Magnet power	300 kW
Dee voltage	2x130 kV
RF power consumption	2x30 kW
Flat-top dee voltage	2x14 kV
Beam extraction	electrostatic deflector

<u>3D calculation of DC-280</u> cyclotron magnetic field

Model of DC-280 cyclotron magnet system

Calculated average magnetic fields

Magnetic field of the radial coils

Beam extraction system

Flat-Top system

Experimental Hall of the SHE-Factory (August 2016)

Correction coils (azimuthal and radial)

Cooling lines

DC-280. Vacuum chamber

Permanent magnet ECR ion source at the test bench

Time-schedule of installation of the DC-280 accelerator complex

No	The content of the work		2016 (months)								2017 (months)														
JN⊡		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
1	Preparing hall of the cyclotron and driveways for installation of the DC-280.																								
2	Assembling of the DC-280																								
	cyclotron magnet.																								
3	Installation of power supply and cooling module of the main winding of the DC-280 for carrying out magnetic measurements.																								
4	Installation and commissioning of magnetic measurement system. Measurements of a magnetic field of the DC-280 cyclotron.																								
5	Installation of the vacuum chamber and components of the vacuum chamber. Test pumping.																								
6	Assembling high-voltage platform and axial injection channel of the beam.																								
7	Installation of ECR ion source.																								
8	Assembling of the RF accelerating system.																								<u> </u>
9	Installation of the high energy ion beam channels.																								<u> </u>
10	Installation of the equipment of the vacuum system.																								
11	Installation of the cooling system and pneumatic system.																								
12	The installation and commissioning of power supply system and control system.																								
13	Installation of the dosimetry control system.																								
14	Creation of the test benches for commissioning of the cyclotron equipment:																								
15	Commissioning of the accelerator systems. Obtaining accelerated ion beam.																								

Modernization of the U-400 cyclotron (U-400R project)

The U-400 cyclotron has been operating since 1978.

The project of the U-400 cyclotron modernization is developed.

The upgrade will be performed after the completion of the DC-280 cyclotron construction

MAIN PURPOSE

- Improvement of the quality and intensity of stable and radioactive beams (48 Ca 2.5÷3 pµA),
- Providing a smooth variation of ion energy in the range of 0.8 – 27 MeV/A,
- Decrease the consumption of rare isotopes,
- Decrease the power consumption from 1 to 0.25 MW.

Cyclotron U400 has been operating since 1979

Radial Distribution of Average Magnetic Field without Trim Coil's Shimming

$U400 \rightarrow U400R$

Radial Distribution of Magnetic Field of Trim Coils

U400								
Ion	Ion energy [MeV/u]	Output intensity						
⁴ He ¹⁺	-	-						
⁶ He ¹⁺	11	3·10 ⁷ pps						
⁸ He ¹⁺	7.9	-						
¹⁶ O ²⁺	5.7; 7.9	5 рµА						
$^{18}O^{3+}$	7.8; 10.5; 15.8	4.4 pµA						
⁴⁰ Ar ⁴⁺	3.8; 5.1 *	1.7 рµА						
⁴⁸ Ca ⁵⁺	3.7; 5.3 *	1.2 рµА						
⁴⁸ Ca ⁹⁺	8.9; 11; 17.7 *	1 pµA						
⁵⁰ Ti ⁵⁺	3.6; 5.1 *	0.4 pµA						
⁵⁸ Fe ⁶⁺	3.8; 5.4 *	0.7 pµA						
84 Kr $^{8+}$	3.1; 4.4 *	0.3 рµА						
$^{136}Xe^{14+}$	3.3; 4.6; 6.9 *	0.08 pµA						

U400R (expected)								
Ion	Ion energy [MeV/u]	Output intensity						
⁴ He ¹⁺	6.4 ÷ 27	23 pµA **						
⁶ He ¹⁺	2.8 ÷ 14.4	10 ⁸ pps						
⁸ He ¹⁺	1.6 ÷ 8	10 ⁵ pps						
¹⁶ O ²⁺	1.6 ÷ 8	19.5 pµA **						
¹⁶ O ⁴⁺	6.4 ÷ 27	5.8 pµA **						
$40 {\rm Ar}^{4+}$	1 ÷ 5.1	10 pµA						
⁴⁸ Ca ⁶⁺	1.6 ÷ 8	2.5 рµА						
⁴⁸ Ca ⁷⁺	2.1 ÷ 11	2.1 pµA						
⁵⁰ Ti ¹⁰⁺	4.1 ÷ 21	1 pµA						
⁵⁸ Fe ⁷⁺	$1.2 \div 7.5$	1 pµA						
⁸⁴ Kr ⁷⁺	0.8 ÷ 3.5	1.4 pµA						
¹³² Xe ¹¹⁺	0.8 ÷ 3.5	0.9 pµA						

Parameters of U-400 and U-400R typical ions

	U400			U400R (expect	ed)
Ion	Ion energy [MeV/u]	Output intensity	Ion	Ion energy [MeV/u]	Output intensity
⁴ He ¹⁺	-	-	⁴ He ¹⁺	6.4 ÷ 27	23 pµA **
⁶ He ¹⁺	11	3·10 ⁷ pps	⁶ He ¹⁺	2.8 ÷ 14.4	10 ⁸ pps
⁸ He ¹⁺	7.9	-	⁸ He ¹⁺	1.6 ÷ 8	10 ⁵ pps
¹⁶ O ²⁺	5.7; 7.9	5 рµА	¹⁶ O ²⁺	1.6 ÷ 8	19.5 pµA **
$^{18}O^{3+}$	7.8; 10.5; 15.8	4.4 pµA	¹⁶ O ⁴⁺	6.4 ÷ 27	5.8 pµA **
⁴⁰ Ar ⁴⁺	3.8; 5.1 *	1.7 рµА	⁴⁰ Ar ⁴⁺	1 ÷ 5.1	10 pµA
⁴⁸ Ca ⁵⁺	3.7; 5.3 *	1.2 рµА	⁴⁸ Ca ⁶⁺	1.6 ÷ 8	2.5 pµA
⁴⁸ Ca ⁹⁺	8.9; 11; 17.7 *	1 pµA	⁴⁸ Ca ⁷⁺	2.1 ÷ 11	2.1 pµA
⁵⁰ Ti ⁵⁺	3.6; 5.1 *	0.4 pµA	⁵⁰ Ti ¹⁰⁺	4.1 ÷ 21	1 pµA
⁵⁸ Fe ⁶⁺	3.8; 5.4 *	0.7 pµA	⁵⁸ Fe ⁷⁺	$1.2 \div 7.5$	1 pµA
⁸⁴ Kr ⁸⁺	3.1; 4.4 *	0.3 рµА	⁸⁴ Kr ⁷⁺	$0.8 \div 3.5$	1.4 pµA
136 Xe ¹⁴⁺	3.3; 4.6; 6.9 *	0.08 pµA	¹³² Xe ¹¹⁺	0.8 ÷ 3.5	0.9 pµA

The development project of the cyclotron U-400M

Increase of the energy of accelerated ions at the cyclotron U-400M

Scheme of the full ACCULINNA-2 setup (left) and the main part of magnets inside of the cyclotron hall (right). Manufactured by SIGMAPHI, http://www.sigmaphi.fr/

U-400M cyclotron

At the U-400M cyclotron 3 acceleration	Ion	Energy	Intensity of extracted
modes are provided		[MeV/u]	beam, pps
Acceleration mode of low energy ions			
E=4.5 ÷ 11 MeV/u	¹² C ²⁺	11	3×10 ¹²
(mass to charge ratio accelerated ions) A/Z=6-10	⁴⁸ Ca ⁶⁺	6.6	3×10 ¹²
Extraction by charge exchange method:	¹³⁶ Xe ¹⁷⁺	6.3	2×10 ¹⁰
$Z_{acc}/Z_{ext} = 2,0-4,0$	238U30+	5	
Acceleration mode of high energy ions (main mode)			
E=30 ÷ 55 MeV/u	${}^{7}{ m Li}{}^{2+}$	35	6×10 ¹³
(mass to charge ratio accelerated ions) A/Z=2,8-5	¹⁸ O ⁵⁺	33	1×10 ¹³
Extraction by charge exchange method: $Z_{acc}/Z_{ext} = 1,4-1,7$	40Ar ¹²⁺	40	1×10 ¹²
Acceleration mode of high energy ions (additional)			
E=55 ÷ 100 MeV/u	¹¹ B ⁵⁺	86	
(mass to charge ratio accelerated ions) A/Z=2,0-2,8	³² S ¹⁴⁺	80	
In this mode the accelerator did't operate	²² Ne ⁹⁺	70	
(The existing extraction method by stripping foil does not allow to extract accelerated beam from the cyclotron. It is necessary to use an electrostatic deflector)	⁴⁸ Ca ¹⁸⁺	59	

2016-2024 years FLNR accelerators running, creation and modernization schedule (2016)

Year	2016	2017	2018	2019	2020	2021	2022	2023	2024
Accelerator									
DC280	Assem	bling Beam tuning	5000	5000	5000	5000	5000	5000	5000
U400M- U400MR	5000	5000	5000	Reconstruction	5000	5000	5000	5000	5000
U400- U400R	5000	5000	5000	5000	2000 Reasse mbling	Building	Assembling	2000	5000
								Beam tuning	
		·	·	·	·		·	•	
Beam time on the targets	10 000	10 000	15 000	10 000	12 000	10 000	10 000	12 000	15 000

- annual beam time on the targets.

Hour

FLNR HEAVY ION CYCLOTRONS for APPLIED RESEARCH and INDUSTRIAL APPLICATION

HEAVY ION ACCELERATORS FOR TRACK MEMBRANE PRODUCTION AND POLYMER MODIFICATION U-300 Cyclotron

U-300 was created in D.V. Efremov Institute
U-300 was in operation at FLNR JINR from 1961 to 1989.

- A specialized accelerator channel for polymer film irradiation has been created in the middle of 70ies.
- Xe ion beams of 1MeV/nucleon energy were used for manufacture of track membranes and for research tasks.

The track membrane technology has been developed on the basis of heavy particles registration by plastic detectors.

HEAVY ION ACCELERATORS FOR TRACK MEMBRANE PRODUCTION AND POLYMER MODIFICATION

FLNR JINR

Cyclotron U-400 (1978)

Beams of Kr, Xe, Bi ions with an energy of 2.5-5 MeV/n are used for track membrane production.

The irradiation chamber provides an opportunity of processing polymer films with a width of up to 60 cm

power consumption - 1500 kW

IMPLANTING CYCLOTRON IC-100 History pages 1985

The first dedicated cyclotron for production of track membranes (nuclear filters)

Energy of ions: ~ 1.2 MeV/nucleon.

Internal source of ions – PIG-type

Accelerated ions: **C** - Ar (A/Z = 5.7-6)

Beam intensity of Ar - 1 μ A

Reconstruction of IC-100 cyclotron (2001-2002)

Parameters of the IC-100 cyclotron

	Parameters	Project	Operation
1	Accelerated ions	Ar, Kr, Xe	²² Ne ⁺⁴ ⁴⁰ Ar ⁺⁷ ⁵⁶ Fe ⁺¹⁰ ⁸⁶ Kr ⁺¹⁵ ¹²⁷ I ⁺²² ¹³² Xe ⁺²³ ¹³² Xe ⁺²⁴ ¹⁸² W ⁺³² ¹⁸⁴ W ⁺³¹ ¹⁸⁴ W ⁺³²
2	Mass-to-charge ratio of accelerated ions	A/Z = 5.3 - 6.0	A/Z = 5.5 - 5.95
3	Ion energy	1-1,25 MeV/A	0,9-1,2 MeV/A
4	Diameter of the magnet pole	1 m	1 m
5	Average magnetic field	1.88 – 2.01 T	1.78 -1.93 T
6	Frequency of the RF system	20.4 - 20.9 MHz	19.8 - 20.6 MHz
7	Injection energy	12.5 kV	14-15 kV
8	Vacuum in injection channel	5·10 ⁻⁷ Torr	1.5·10 ⁻⁷ Topp
9	Working vacuum in cyclotron	5·10 ⁻⁷ Torr	5·10 ⁻⁸ Torr
10	Voltage on the dees	50 kV	45-55 kV
11	Intensity of the accelerated and extracted beam of $^{86}\mathrm{Kr^{15+}}$	~10 ¹² pps (2.5 μA)	1.4·10 ¹² pps (3.5 μA)
12	Intensity of the accelerated and extracted beam of $^{132}Xe^{23+}$	~ 2.6 [.] 10 ¹¹ pps (1 µA)	~ 10 ¹² pps (3.7 μA)

DC-60 CYCLOTRON

DC-60 is developed and created at FLNR JINR for Research Center of L.N.Gumilev Euroasia State University in Astana, Kazakhstan

DC-60 CYCLOTRON MAIN PARAMETERS

Ion beam injector	ECR ion source (14 GHz) + axial injection system		
Magnet pole diameter	1.62 m		
Cyclotron magnetic field Power consumption	1.45 T - main mode 1.25 -1.65 T - magnetic field variation 12 - 45 kW		
Correction coils: - radial coils - azimuth coils Total power of correction coils	5 couples 2 couples ~ 1 kW		
RF system: - frequency - harmonic number - dee voltage - RF power	11.00 - 17.5 MHz 4 and 6 50 kV One amplifier of 20 kW (two coaxial resonators connected in the cyclotron centre)		
Pressure in cyclotron vacuum chamber	(1-2)·10 ⁻⁷ Torr		

DC-60 CYCLOTRON

PARAMETERS OF ACCELERATED ION BEAMS

Ions	Li - Xe
Mass to charge ratio A/Z	6 - 12
Energy of accelerated ions	0.35 - 1.77 MeV/nucleon
Energy spread	2 %
Discrete change of ion energy	Due to A/Z ratio
Smooth energy variation with respect to nominal energy	-25 % / +25% Due to magnetic field variation

LOW ENERGY ION BEAM PARAMETERS (from ECR)

Ions	He - Xe
Mass to charge ratio (A/Z)	2 - 20
Ion energy from ECR source	10 - 20 keV/charge
Energy spread	0.1 %
Discrete ion energy change	Due to change of A/Z
Smooth ion energy variation	Due to extracted potential variation in ECR source

Table 1: Current characteristics of accelerated	ion beams
---	-----------

Ion	A/Z	Energy, MeV/nucl.	Beam current ECR, μΑ	Extracted beam current, µA
⁷ Li ¹⁺	7	1.32	110	2.2
¹² C ¹⁺	12	0.40	63	0.6
$^{12}C^{2+}$	6	1.00	147	1.7
$^{12}C^{2+}$	6	1.25	150	1.5
¹² C ²⁺	6	1.50	170	2.1
${}^{12}C^{2+}$	6	1.75	140	1.7
13C2+	6.5	1.25	18.1	0.7
¹³ C ²⁺	6.5	1.50	19.9	0.6
13C3+	4.3	1.75	16.3	0.5
¹⁴ N ²⁺	7	0.4	84	0.9
$^{14}N^{2+}$	7	1.0	134	1.5
¹⁴ N ³⁺	4.6	1.4	325	2.0
¹⁴ N ³⁺	4.6	1.5	320	2.7
¹⁴ N ³⁺	4.6	1.75	120	1.9
¹⁶ O ²⁺	8	1.0	90	1.08
¹⁶ O ³⁺	5.3	1.25	85	1.1
¹⁶ O ³⁺	5.3	1.4	112	0.9
¹⁶ O ³⁺	5.3	1.5	95	0.8
¹⁶ O ³⁺	5.3	1.75	86	1.1
²⁰ Ne ³⁺	6.67	1.08	106.0	1.03
²⁰ Ne ³⁺	6.67	1.4	95.8	1.56
²⁰ Ne ⁴⁺	5	1.75	76.4	2.0
³² Se ⁶⁺	5.33	1.75	61.1	0.8
40Ar4+	10	0.48	44.6	0.67
40Ar4+	10	0.64	37.2	0.84
40Ar5+	8	0.58	24.2	0.4
40Ar7+	5.7	1.1	42.7	1.2
40Ar7+	5.7	1.75	45.1	1.0
⁸⁴ Kr ⁹⁺	9.3	0.4	47.6	0.25
⁸⁴ Kr ¹⁰⁺	8.4	0.7	49.8	0.4
⁸⁴ Kr ¹²⁺	7	1	34.3	1.7
⁸⁴ Kr ¹⁵⁺	5.6	1.4	26.2	1.9
⁸⁴ Kr ¹⁵⁺	5.6	1.75	28.6	2.1
¹³² Xe ¹⁴⁺	9.42	0.6	11.8	0.14
¹³² Xe ¹⁵⁺	8.8	0.4	10.7	0.25
¹³² Xe ¹⁷⁺	7.7	1	21.2	0.40
¹³² Xe ²⁰⁺	6.6	1.5	22.6	0.46
¹³² Xe ²²⁺	6	1.75	16.5	0.32

Proceedings of RuPAC2014, Obninsk, Kaluga Region, Russia

THCA01

ACCELERATOR COMPLEX BASED ON DC-60 CYCLOTRON

M. Zdorovets[#], I. Ivanov, M. Koloberdin, S. Kozin, V. Alexandrenko, E. Sambaev, A.Kurakhmedov, A. Ryskulov, Institute of Nuclear Physics, Astana, Kazakhstan **DC-110 dedicated heavy ion cyclotron** developed and created at the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research for the BETA research and industrial complex in Dubna (Russia)

Photo of membrane on the electron microscope. Pore density - 1.32 ·10⁸ pores/cm2. Magnification of 30,000 times Spo

December 29, 2012 first samples of track membranes were received

Spot of ¹³²Xe²⁰⁺ beam on luminophor

Facility for polymer film irradiation

Main parameters of DC-110 cyclotron.

ACCELERATED IONS	⁸⁶ Kr ¹³⁺	¹³² Xe ²⁰⁺	⁴⁰ Ar ⁶⁺
Mass to charge ratio of ions A/Z	6.615	6.60	6.667
lon energy	2.5	2.5	2.5
Beam intensity, pps	6·10 ¹²	3·10 ¹²	6·10 ¹² (*)
MAGNETIC SYSTEM			
Pole diameter, m	2		
Average magnetic field B _o , [T]	1.670	1.666	1.6830
Increasing average magnetic field at final radius ΔB ,[Gs]	45	45	45
RF SYSTEM			
Ion revolution frequency, F _{ion} , [MHz]	3.877	3.877	3.877
Acceleration harmonic number	2	2	2
Frequency of RF system, F _{RF} , [MHz]	7.754	7.754	7.754
ION SOURCE	ECR, 18 GHz		
EXTRACTION SYSTEM	Electrostatic deflector		

Ion beam parameters of the DC-110 cyclotron

Optimal frequency values of the RF system and the magnetic field during acceleration of ⁴⁰Ar⁶⁺, ⁸⁶Kr¹³⁺ and ¹³²Xe²⁰⁺ ions.

Ion	Mass to charge ratio (A/Z)	Cyclotron magnetic field, T	Acceleration harmonic	RF generator frequency, MHz	Frequency difference, ΔF,
⁴⁰ Ar ⁶⁺	6.6667	1.6612	2	7.653	23 kHz
⁸⁶ Kr ¹³⁺	6.6154	1.6612	2	7.712	-18 kHz
¹³² Xe ²⁰⁺	6.6000	1.6612	2	7.730	0 kHz

Experimental beam parameters of the DC-110 cyclotron obtained after completion of start-up works

Ion	Beam intensity from	Accelerated and extracted beam intensity, µA		Ion energy, MeV/nucleon
	ECR source, µA	design	result obtained	
⁴⁰ Ar ⁶⁺	94	6	13	2.5
⁸⁶ Kr ¹³⁺	150	13	14.5	2.5
¹³² Xe ²⁰⁺	190	10	10.9	2.5

Testing of electronic devices at FLNR cyclotron beams

The Russian Space Agency (**Roscosmos**) carries out investigations of singleevent effects (SEE) in electronic devices using ion beams of U-400 and U400M.

➢ U400 cyclotron delivers beams of ions with atomic masses of 4÷209 at energies of 3÷20 MeV/nucleon.

> U400M cyclotron was intended for acceleration of ion beams in two modes: - high energy ion acceleration mode - 19–53 MeV/nucleon (mass to charge ratio of accelerated ions A/Z = 2.8 - 5),

- low energy ion acceleration mode - 5-10 MeV/nucleon (mass to charge ratio of accelerated ions A/Z = 7-10).

➢ Now, ions of O, Ne, Ar, Fe, Kr, Xe, Bi with an energy of 3÷6 MeV/nucleon and ions from C up to Xe with energies from 25 to 53 MeV/nucleon are available for experiments of testing the electronic devices at 4 beam channels of U-400 and U-400M.

Ion Beam Line for SEE Testing

X-Y scanning system (50 Hz)

Ta foils (5-27 μ m) drive)

Test chamber

Turbo molecular pumps

New building of the nanotechnology Center

The equipment in the new building of the nanotechnology Center

The equipment of the nanotechnology Center

Scanning electron Microscope (resolution 1.3 nm)

Scanning electron Microscope (resolution 6 nm)

THANK YOU FOR YOUR ATTENTION !

 \parallel

The state

AFterox Lationatory of Nakelear Redetions, JIN