Collector Ring Project at FAIR: Present Status

Dr. Petr Shatunov

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Peterhof 23, November, 2016

Project Timeline

- November, 2013: Memorandum of understanding BINP, FAIR, GSI.
- February, 2014: the last version of TDR by the GSI team is published.
- August, 2014: The contract for the technical design, construction, installation, and commissioning of the whole CR and its components between BINP and FAIR.
- 2014-2015: 6 working meetings at GSI and BINP.
- November, 2015: International Workshop on Antiproton Physics and Technology at FAIR.
- May, 2016: Annex to TDR is published by BINP team.
- 2017-2020: Production, FAT, SAT, Installation.
- 2021+: Commissioning

FAIR Project

Present CR Layout

Lattice

SC limitations:

 $\Delta \Psi_{pkx,y} \approx (2n+1) \cdot \pi/2.$ $\eta_{pk} = \frac{1}{\gamma^2} - \frac{1}{s_k - s_p} \int_{s_p}^{s_k} \frac{D(s)}{\rho(s)} ds = 0$ $|\eta| = 0.014.$

Aperture limitations:

Dipoles: 1. $A_x = \pm 195 \text{ mm}, A_y = \pm 75 \text{ mm}.$ Arc "wide" quads: 2. $A_x = \pm 214 \text{ mm}, A_y = \pm 100 \text{ mm}$ (hexagonal shape). 3. **RF-resonators**: $(A_x^2 + A_y^2)^{0.5} = 75 \text{ mm}$ (round shape). SC pickups and kickers: 4. $A_{x,y} = \pm 70 \text{ mm.}$ 5. SC Palmer pickup: $A_{y} = \pm 66 \text{ mm}, A_{y} = \pm 200 \text{ mm}.$

Aperture limitations

Injected beam cross-sections @ different types of magnets

Chromatic effects

40 $\beta_x \beta_y$ 30 **E** ⊾ 20 ജ β_x, 10 0 n En n 80 0 20 40 60 80 100 s (m) 0 (m e L 20 100 0 40 60 80 s (m) 20 σ_x, σ_v 10 $\sigma_{\rm x}$, $\sigma_{\rm y}$ (cm) 0 D -10-20 0

40

80

60

s (m)

100

20

Lattice functions variation within $\Delta p/p = \pm 3 \%$

Beam size with chromatic aberrations

Dynamic Aperture

Simulation parameters: sextupoles + quad+/-1%err + quad 5mrad_rotat + sext10%err + sext10mrad_rot + quads_mult + dip_mult, 1000turns

Field imperfections in dipoles and wide quads, in scale $\Delta B/B = \pm 5 \cdot 10^{-4}$

Beams Injection

Aperture limitations for injected beam

Beam cross-sections @ septa

Pbar Channel Lattice

Chromatic Effects in TC

Particles Trackings in TC pbar-separator -----> <----- TCR1</pre> **-><--**CR 30 20 10 0 -10 -20 -00 Π Н -30 20 60 100 40 80 140 120 20

(cm)

×

Phase space distribution (beginning)

Beam transverse and momentum distribution at the entrance of injection septum magnet.

*

3D-models of CR components are prepared and uploaded to EDMS.

Bending magnet

Н	1.6 T
Bending radius	8.125 m
Homogeneity width	455 mm
$\Delta B/B$	10-4
Weight	59.8 to

3D-model

Pole and coil shape

Cross-section

Other Magnets

Wide quadrupole

G	4.5 T/m
L _{eff}	1000 mm
R _{in}	160 mm
Weight	10.8 to

Sextupole

Н"	10 T/m ²
L _{eff}	600 mm
R _{in}	201 mm
Weight	1.4 to

Vertical steerer

Maximum field	0.045 T
Field	±1.5 %
homogeneity	
Effective length	0.740 m
Power loss	725 W
Maximum	13.5 A
current	

Octupole coils

Н'"	13 T/m ³
$\Delta B/B$	15 %
Current	6 A
Power	500 W
consumption	300 W

The technical solution for last magnetic element, octupole correction coil inside SWQ quadrupole, was finally found without disturbing other elements.

The thin octupole windings are wound in a gap between iron pole and main coil. The quad's pole serves as a support for the octupole winding.

Injection Septum Magnet

The set of three septa together

Injection/Extraction kickers

Number of kicker units	6
Deflection angle	15 mrad
Length of vacuum tank	1.9 m
Maximum B-field	54 mT
Unit length on ferrite	470 mm
Horizontal aperture	180 mm
Vertical aperture	130 mm
Current	5.6 kA
Loading voltage	64 kV
Ferrite mass per module	74 kg
Rise/fall time response of	< 210 mg
magnet to real current pulse	< 318 hs
Flat top length	(0.05–1.5) μs

Beams Extraction

Propagating in arc with large amplitudes

3D model

Extracted and injected beams crosssections @ extraction septum

Beam Diagnostics

Device	Qty	Parameter	Application
DC Transformer	1	DC current	Stored current, beam lifetime
Cryogenic Current Comparator	1	DC current	Stored current, beam lifetime
BPM	19	Beam center-of- mass	Closed orbit, turn-by- turn, K-modulation, lattice functions
BTF Exciter	1	Frequency of Schottky sidebands	Tune by BTF, tune by noise excitation, tune by Q-kick
Schottky pickup	1	Momentum distribution	Δp/p, tune, chromaticity
Fast Current Transformer	1	Broadband bunch structure	Longitudinal emittance, bunch gymnastics
Residual Gas Profile Monitor	2	Beam profile	Transverse emittance, injection matching
Beam Loss Monitor	Distri- buted	Beam loss	Mis-steering of magnets, halo detection at scrapers
Scintillating Screen	5	Beam profile	First turn diagnostics
Beam-Stopper	2	Stop the beam	First turn diagnostics
Scrapers	2×4 2×4	Beam size	Transverse beam size and beam alignment

2.5.3	Power converters of CR	Num	Current [A]	Voltage [V]	Power [kW]
2.5.3.1	Dipole magnets PC	1	1450	2750	4000
2.5.3.2.1	Quad magnets PC Type1	6	1350	200	300
2.5.3.2.2	Quad magnets PC Type2	2	1100	100	150
2.5.3.2.3	Quad magnets PC Type3	7	1200	50	75
2.5.3.3.1	Sextupole magnets PC	6	500	100	50
2.5.3.4.1	Octupole magnets PC	12	6	50	0.5
2.5.3.2.1	Steering hor. PC	24	6	50	0.55
2.5.3.2.2	Steering vert. PC	16	20	100	2
2.5.3.2.3	Steering hor./vert. PC	8	12	100	1.2

FAIR

Power Converters

Vacuum Systems

Specifications status

PSP	Description	Quant.	Status	EDMS Cont.	Resp.	CB-2005
2.5.2	CR Magnets	7				53.0 %
2.5.2.1	CR Dipole Magnet		Released	1174030	BINP	38.5 %
2.5.2.2.1	Wide Quadrupole Magnets		Released	1518619	BINP	8.8 %
2.5.2.2.2	Narrow Quadrupole Magnets		Released	1518618	BINP	0.5 %
2.5.2.3	Sextupole Magnets		Released	1516972	BINP	2.8 %
2.5.2.4	Octupole Magnets		Under preparation (Q4/2016)		BINP	
2.5.2.5	CR Septum Magnets		Engineering check	1698195	BINP	1.1 %
2.5.2.6	Steering Magnets		Engineering check	1698837	BINP	1.3 %
2.5.3	Power Converters	6				11.4 %
2.5.3.1	Dipole Magnets PS		Engineering check	1533537	BINP	2.6 %
2.5.3.2	Quadrupole Magnets PS		Released	1518594	BINP	4.5 %
2.5.3.3	Sextupole Magnets PS		Released	1518595	BINP	1.0 %
2.5.3.4	Octupole coils PS		Engineering check	1719038	BINP	0.1 %
2.5.3.5	Injection/Extraction Septa		Engineering check	1698195	BINP	0.8 %
2.5.3.6	Steering Magnets		Released	1573731	BINP	1.8 %
2.5.5	Injection /Extraction	1				15.6 %
2.5.5.1,2	Kickers		Released	1580588	BINP	15.6 %
2.5.6	Beam Diagnostics	10				8.2 %
2.5.6.1.1	DC Transformer		Released	1563303	BINP	0.2 %
2.5.6.2	Beam Position Monitors		Engineering check	1562811	BINP	2.4 %
2.5.6.3.1	BTF Exciter		Engineering check	1609816	GSI	0.8 %
2.5.6.3.2	Schottky Pickup		Engineering check	1560768	GSI	0.6 %
2.5.6.3.4	Fast Current Transformer		Released	1557833	BINP	0.4 %
2.5.6.4	Residual Gas Profile Monitor		Released	1571623	BINP	1.2 %
2.5.6.6.1	Scintillation Screen		Engineering check	1566551	BINP	0.1 %
2.5.6.6.1.6	Data Acquisition for Sci. Scr.		Engineering check	1560764	GSI	0.1 %
2.5.6.6.3	Beam Stopper		Engineering check	1603677	BINP	0.1 %
2.5.6.7	Scraper		Engineering check	1577945	BINP	1.0 %
2.5.7	Vacuum	11	Under preparation (Q4/2016)			11.9 %
2.5.7.1.2.2	Dipole Chambers		Engineering check	1518019	BINP	1.4 %
2.5.7.1.3	Valves		Engineering check	1719672	BINP	0.6 %
2.5.7.1.5	Vacuum instrumentation		Engineering check	1719736	BINP	0.3 %
2.5.7.1.1.1	Rouging stations		Engineering check	1720669	BINP	0.2 %

Released specs cover 75% of the cost (BINP part)

Production Plans

Timeline for other CR Magnets

Years						2	0	17	7											2()]	8	3										2	20)1	9										2	0	2()									2	20)2	1				
Months	1	2	3	4	4	5	6	7	8	9	1	01	1 1	2	13	14	15	510	51'	71	81	92	20	21	22	23	32	42	252	26	27	28	29	30	31	32	233	334	43:	53	63	73	383	394	40	41	42	43	44	454	46	47	484	49	50	51	52	53	54	55	56	57	58	591	60
Planning																																																																	
Production																																																																	
Assembly																																																																	
Transport. in Tunnel																																																																	
			-	p	re	p	ar	at	ic	n	1																																																						
			-	m	na	n	uf	à	cti	ur	re												p	ro	oto	ot	y]	pe	i	S 1	re	ac	lу	r																															

Timeline for other CR Magnets

Years	2017															2()1	8										ĺ	2()1	9										2	02	20)									2()2	21								
Months	1	2	2	; 4	1 :	5	6	7	8	9	1	01	11	2	13	14	15	16	517	718	81	920	02	12	22	23	24	25	526	627	28	329	93	03	1 32	23	33	43	53	63	373	383	94	104	14	24	34	144	54	64′	7 48	8 4!	95(35	1 52	2 53	3 5.	45	5 5	6 5'	7 58	8 59	9 60
Quads																																																						Τ									
Sextupoles																																																						Ι									
Steerers																																																															
Septums																																																															
Transport. In Tunnel																																																															

Overall time schedule for CR debunchers

		20	17			20	18			20	19			20	20			20	21	
	Q1	Q2	Q3	Q4																
Specifications (made)																				
Planning (made)																				
Production (all 5 RF systems)																				
Shipment																				
Transport in tunnel																				
Bringing in service without beam																				

Overall time schedule for Stochastic Cooling System

	2017				20	18		2019				2020				2021				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Specifications (made)																				
Planning																				
Production																				
Shipment																				
Transport in tunnel																				
Bringing in service without beam																				

Thank you!

BINP:

V. Anashin, E. Bekhtenev, D. Berkaev, M. Bryzgunov, D. Gurov, A. Kasaev, M. Kholopov, V. Kolmogorov, I. Koop, A. Krasnov, O. Meshkov, N. Nefedov, Yu. Rogovsky, T. Rybitskaya, L. Schegolev, A. Semenov, D. Senkov, P. Shatunov, Yu. Shatunov, S.Shiyankov, D. Shwartz, A. Starostenko, A. Sukhanov, A.Tsyganov, A. Utkin

GSI:

O. Chorniy, C. Dimopoulou, A. Dolinskyy, O. Gorda, K.Knie, A. Kraemer, J. Kurdal, H.Leibrock, C. Muehle, U.Blell, M.Petryk, I. Petzenhauser, H. Schwarz, I. Baurer, I.Schurig, T. Ziglasch, S. Litvinov, S. Sanjari, M. Shwickert, P. Kovina, B. Hohne-Walasek, Y. Litvinov.

FAIR:

J.Henschel, J.Blaurock, D.Urner, R.Amirikas, N.Winters, K.Istomin, F.Becker.

CERN: E.Mahner.

Jülich: D. Prasuhn.

Cosylab: R. Hrovatin.

2.5.4 RF System

The commissioning of the FoS module whole system is ongoing.

CR Debuncher Cavities at GSI

Status:

- Contracts with Research Instruments, PPT Ampegon (Germany), OCEM (Italy)
- All subcomponents of the FoS system are available at GSI
- System integration has started in 2015
- DC working points CW + Pulse established
- Gap voltage (30 v to 2 kV) in CW operation established
- Gap voltage in pulsed operation (1 Hz, 2 ms, 1 kV to 40 kV) established
- SAT of RF power supply unit : December 2016
- FAT/SAT of overall RF system: Q1/2017

First device for installation into tunnel

I.Koop, MAC16

One needs 5 pieces

Stochastic Cooling: Prototype PU tank at GSI

Prototype pickup tank with cryoheads, intermediate (Au on Cu) cryoshield, motor drive units for moving electrodes

successful UHV cryotests down to 20 K with 2 electrode dummies and 2 He cryoheads (up/ down) Heat up module with 18 W simulating heat load from 8 modules thermal concept OK for full version (modules < 30 K)

34 Power amplifiers is a large cost factor for the SC system. Contract with an external company has been signed. Production is ongoing.

SAT FoS has been performed. The results of SAT: The amplifier are fully compliant with the RF specification! But needs amendments (power supply, controls) at the manufacturer before final acceptance

Stochastic Cooling: Prototype PU tank at GSI

 Palmer pickup (rail electrodes): RF concept finished in 2015, consolidation/ refinements engineering of tank underway in 2016; continuation (specs & tendering) subject to personnel recruitment

Figure 6: Pickup impedance and nonlinear phase deviation for Faltin rail structure B consisting of two rails of 49 slots each whose signals have been combined. The performance both with and without the presence of ferrite damping material is shown. Simulations are done with a beam centred vertically and with horizontal offset of 40 mm.

Overall time schedule for Stochastic Cooling System

		2017			2018				2019				2020				2021			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Specifications (made)																				
Planning																				
Production																				
Shipment																				
Transport in tunnel																				
Bringing in service without beam																				