

Novosibirsk Free Electron Laser:

Terahertz and Infrared Coherent Radiation Source

Presented by Ya. V. Getmanov Budker INP

Project participants

V.S.Arbuzov, N.A.Vinokurov, P.D.Vobly, V.N.Volkov, Ya.V.Getmanov, Ya.I. Gorbachev, I.V.Davidyuk, O.I.Deichuly, E.N.Dementyev, B.A.Dovzhenko, B.A.Knyazev, E.I.Kolobanov, A.A.Kondakov, V.R.Kozak, E.V.Kozyrev, V.V.Kubarev, G.N.Kulipanov, E.A.Kuper, I.V.Kuptsov, G.Ya.Kurkin, S.A.Krutikhin, L.E.Medvedev, S.V.Motygin, V.K.Ovchar, V.N.Osipov, V.M.Petrov, A.M.Pilan, V.M.Popik, V.V.Repkov, T.V.Salikova, M.A.Scheglov, I.K.Sedlyarov, S.S.Serednyakov, O.A. Shevchenko, A.N.Skrinsky, S.V.Tararyshkin, A.G.Tribendis, V.G.Tcheskidov, K.N.Chernov

Outline

- Brief introduction to the FEL physics
- The NovoFEL accelerator design and operation
- NovoFEL as three FELs based source of radiation
- The third FEL commissioning and first experiments
- Nearest and far future plans for the conclusion

FEL principle of operation

synchronisme condition which is necessary for the energy transfer

 $\left\langle \frac{d\gamma}{dz} \right\rangle = \frac{e}{mc^3} \left\langle \mathcal{E}_x V_x \right\rangle$

FEL principle of operation

FEL oscillator

Equivalent scheme

Energy Recovery Linac

1 – injector, 2 – linac, 3 – bending magnets, 4 – undulator, 5 –dump

Accelerator is the most important part of any FEL. ERL is the best choice for high power FEL.

NovoFEL Accelerator Design Energy Recovery Linac

1 – injector, 2 – linac, 3 – bending magnets, 4 – undulator, 5 –dump

Accelerator is the most important part of any FEL. ERL is the best choice for high power FEL.

Horizontal tracks

Main linac

1st stage FEL undulator 2nd stage FEL undulator

11 3rd stage FEL undulator

Siberian Center of Photochemical Research

Siberian Center of Photochemical Research

Layout of Injector, Main Linac and Vertical Beamline (the First ERL)

- 1 electron gun
- 2 bunching cavity
- 3 focusing solenoids
- 4 merger
- 5 main linac
- 6 focusing quadrupoles

- 7 magnetic mirror
- 8 undulator
- 9 phase shifter
- 10 optical cavity
- 11 calorimeter
- 12 beam dump

Electrostatic Gun

Vladimir N. Volkov CW 100 mA Electron RF Gun for Novosibirsk ERL FEL TU CA MH 02 November 22, 10:20 – 10:40

	Measured beam parameters		
	Energy, KeV	100 ÷ 320	
	Pulse duration(FWHM), ns	≤ 0.6	N
	Bunch charge, nQ	0.3 ÷ 1.5	
	Repetition rate, MHz	0.01 ÷ 90	
THEFT	Average current, mA	102 max	

Injector

Injector

RF Gun Installation Layout

RF Gun Installation Layout

RF Cavities

Main Linac

Main Linac

100

1

RF Power Supply

Frequency, MHz	180.4
Power, MW	2 x 0.6

RF Power Supply

Frequency, MHz	180.4
Power, MW	2 x 0.6

RF Power Supply

Frequency, MHz	180.4
Power, MW	2 x 0.6

New Amplifier for the Bunching Cavity

f = 180 MHz, efficiency = 52 % P_{IN} = 1 W, P_{OUT} = 5 kW 8 transistors NXP BLF188XR water cooling

Layout of Horizontal Beamlines (the Second and the Third ERLs)

Layout of Horizontal Beamlines (the Second and the Third ERLs)

Layout of Horizontal Beamlines (the Second and the Third ERLs)

Layout of Horizontal Beamlines (the Second and the Third ERLs)

Magnets and Vacuum Chamber of Bends

5FR-2016

Compact 13.5-nm free-electron laser for extreme ultraviolet lithography

Y.Socol, G.N.Kulipanov, A.N.Matveenko, O.A.Shevchenko and N.A.Vinokurov, FEL10

With 10-T superconducting magnet it may be used to generate 20-fs periodic x-ray pulses, which are necessary for time-resolved experiments, which use femtoslicing technique at storage rings now. But, the number of useful photons is thousands times more.

NovoFEL as Radiation Source

X-ray FELs

The most attractive ranges for FELs are at very short and at very long wavelength, where there are no other lasers

Electromagnetic Undulators

	1-st FEL	2-d FEL
Period, cm	12	12
Maximum current, кА	2.4	2.4
Maximum K	1.25	1.47

Electromagnetic Undulators

Maximum current, кА	2.4	2.4	
Maximum K	1.25	1.47	

The tunability range of the 2nd FEL will be increased from **37 - 80** to **15 - 80** microns

Optical beamlines and user stations

The 1st stage FEL radiation parameters

•	Radiation wavelength, microns	90 - 240
•	Minimum pulse duration, ps	70
•	Repetition rate, MHz	5.6 / 11.2 / 22.4
•	Maximum average power, kW	0.5
•	Minimum relative linewidth (FWHM)	3·10 ⁻³
•	Maximum peak power, MW	1

The obtained radiation parameters are still the world record in terahertz region.

62/50

The third FEL undulator

First lasing

Challenges

 Align mirrors of 40 meters long optical cavity and adjust the distance between them with accuracy better than 0.3 mm

• Obtain high recovery efficiency in multiturn ERL

 Adjust the beam trajectory in undulator with submillimetric accuracy

First lasing

When it's done all that remains is to adjust RF frequency and watch carefully

6 July 2015 – the first lasing

6 July 2015 – the first lasing

First experiments with 3rd stage FEL Drilling holes in plexiglass

Radiation power was about 30 watts Wavelength 8.96 µm

First experiments with 3rd stage FEL Drilling holes in plexiglass

Radiation power was about 30 watts Wavelength 8.96 µm

First experiments with 3rd stage FEL Drilling holes in plexiglass

Radiation power was about 30 watts Wavelength 8.96 µm

First experiments with new FEL

Measurement of the radiation wavelength

International Tomography Center SB RAS – the first user of the third FEL

Electron beam and radiation parameters

	1 st	2 nd	3 rd	
Energy, MeV	12	22	42	46
Current, mA	30	10	3	50
Wavelength, µm	90-240	37-80	8-11	5-20
Radiation power, kW	0.5	0.5	0.1	5
Electron efficiency, %	0.6	0.3	0.2	0.5

Nearest and far future plans

- Optical (SR) diagnostics of electron beam parameters
- Decrease beam losses and increase average current
- Increase DC gun voltage and improve beam quality in injector
- Optimize electron efficiency of FEL
- Improve x-ray and neutron radiation shielding
- Install RF gun

Nearest and far future experiments

- Selective photochemical reactions
- Infrared laser catalysis
- Separation of isotopes

Overview of the NovoFEL facility

- The first stage of Novosibirsk high power free electron laser (NovoFEL) based on one track energy recovery linac (ERL) working in spectral range (90 – 240) μm was commissioned in 2003.
- The second stage of NovoFEL based on two track energy recovery linac, working in spectral range (37 – 80) μm, was commissioned in 2009.
- The third stage of NovoFEL based on four track ERL was commissioned on July of 2015. Spectral range now is (8-11) μm. First operation for users was done in 2017.

Thank you for your attention!

SFR-2016, 4-7 July 2016, Novosibirsk, Russia

