

Status of the European XFEL

Hans Weise, DESY

on behalf of the European XFEL Accelerator Consortium work supported by the respective funding agencies of the contributing institutes; for details please see http:www.xfel.eu

XFEL Superconducting Cavities

European The European XFEL XFEL Built by Research Institutes from 12 European Nations

Some specifications

- Photon energy 0.3 24 keV
- Pulse duration ~ 10 100 fs
- Pulse energy few mJ
- Superconducting linac 17.5 GeV
- 10 Hz (27 000 b/s)
- 5 beam lines / 10 instruments
 - Start version with 3 beam lines and 6 instruments
- Several extensions possible:
 - More undulators
 - More instruments
 -
 - Variable polarization
 - Self-Seeding
 - CW operation

European

Accelerator Complex with Challenging Parameter Set

Electron beam energy	17.5 GeV	
Bunch charge	0.02 - 1 nC	
Peak current	2 - 5 kA	
Slice emittance	0.4 - 1.0 mm mrad	
Slice energy spread	4 - 2 MeV	
Shortest SASE wavelength	0.05 nm	
Pulse repetition rate	10 Hz	
Bunches per pulse	2700	
Pulse length	600 µs	

XFEL The Suite of Instruments

More about experiments: http://www.xfel.eu

ASSOCIATION

RF Gun Commissioning

a short beam diagnostics section upstream of a standard

XFEL 1.3 GHz accelerator module followed by a 3.9 GHz module

EuropeanXFEL Injector Status as of 6/2016XFEL(end of commissioning run)

- Injector installation finalized in Q4/2015
 - 3.9 GHz module installed in 9/2015
 - Injector cool-down started beginning of 12/2015
 - First Beam on December 18th, 2015
- Successful commissioning during Q1/2016
- Emittance measurements done on a routine basis;
- Projected emittance as expected (1...1.5 mm mrad)
- Full bunch train length (2700 bunches) reached and beam stopped in injector beam dump
- Transverse Deflecting System operated
- Slice emittance measurements give sho 0.5 mm mrad for 500 pC
- Laser heater commissioning started

RuPAC 2016 – November 2016 Hans Weise, DESY

European

Slice Emittance Measurements with fast kickers and off-axis screens

- 0.6 mm mrad horiz. at 500 pC and 53 MV/m gun gradient
- the smallest slice emittance measured was 0.5 mm mrad at 60 MV/m

Slice Emittance Measurement Based on Quad Scan Tomographic reconstruction of the hor. phase space scan

- Results from an optics scan with 5 quads and 17 different beam optics. The beam was analyzed on the last screen in the diagnostics section.
- The obtained data was used to calculate slice emittances and to reconstruct the hor. phase space of all bunch slices using a tomographic algorithm (MENT*). *MENT: Maximum entropy algorithm

Slice emittances along the bunch. This measurement led to a core slice emittance of 0.4 mm mrad. The gun was operated at 53 MV/m.

Tomographic reconstruction of the horizontal phase space for the center slice.

XFEL Emittance Measurements along Bunch Trains

- The TDS also allows to measure slice emittances along the bunch train.
- The behavior of the slice emittances along the bunch is reproducible over the bunch train. The smallest slice emittance is measured for the core of the bunch.
- The projected emittance and the mismatch parameter are almost constant over the bunch train.
 Horizontal slice emittances along the bunch train

1.2 1.1 normalized emittance [mm mrad] .2 0.9 0.8 0.6 0.8 0.4 70 0.7 60 50 40 0 2 0.6 30 20 10 bunch no. 10 0.5 slice no. 12

XFEL Full Bunch Train Operation

- A dedicated injector beam dump system allows for full bunch train operation
- 24/7 operation is used to test many operation procedures
- **Operation crew** is getting trained

EuropeanWarm Beam Line SectionsXFELDogleg & BC0 in Front of Linac L1

- All girders are preassembled in clean rooms
- Tunnel installation requires local clean rooms

RuPAC 2016 – November 2016 Hans Weise, DESY

DRY

G

HELMHOLTZ

18

Warm Beam Line Sections Bunch Compressor Sections – Challenging Installation

RuPAC 2016 – November 2016 Hans Weise, DESY

HELMHOLTZ ASSOCIATION

XFEL Bunch Compressor BC1

European

XFEI

Transverse Deflection System in Bunch Compressor BC2

- The BC2 TDS RF station is installed and successfully commissioned.
- TDS structure commissioning is next.
 - Water cooling / temperature stabilization / RF.

HELMHOLTZ

21

European XFELEuropean XFELBoth Bunch Compressors BC1 / BC2 includeXFELCommissioning Beam Dumps

RuPAC 2016 – November 2016 Hans Weise, DESY

22

XFEL Linear Accelerator

- The accelerator tunnel (XTL) houses three cold linac sections separated by bunch compressors.
- Down to approx. 50 m behind the last module the complete beam vacuum system is particle free.
- 4 modules / 32 s.c. cavities are connected to one 10 MW klystron.
- 12 modules form a cryogenic string.
- At the XTL end a collimation and separation system is installed.

XFEL All Accelerator Modules Installed

1st module July 1st, 2014 – last module August 1st, 2016

XFEL The First and the Last Module

×FEL module installation rate ×TL 2016-08-02

- In total 96 modules in 103 working weeks
- The initially projected rate was 1 acc. module per week.
- Variation in coupler availability was compensated by additional efforts at CEA / Irfu wrt. assembly rate.
- Gained experience with module testing was used to shorten test duration of module 40+ .

HELMHOLTZ ASSOCIATIO

28

×

cea

HELMHOLTZ

ASSOCIATION

RuPAC 2016 – November 2016 Hans Weise, DESY

HELMHOLTZ ASSOCIATION

30

European Reference XFEL Contributions to th	e European XFEL Modules
BINP Novosibirsk, Russia	cold vacuum bellows
CEA Saclay / Irfu, France	 coupler vacuum line cavity string and module assembly cold beam position monitors magnetic shields, superinsulation blankets
CIEMAT, Spain	Superconducting magnets
CNRS / LAL Orsay, France	RF main input coupler incl. RF conditioning
DESY, Germany	 cavities & cryostats
	 contributions to string & module assembly coupler interlock frequency tuner cold vacuum system integration of superconducting magnets /
	 cold beam position monitors
INFN Milano, Italy	 cavities & cryostats contributions to frequency tuners
Soltan Institute, Poland	 Higher Order Mode coupler & absorber
·	

RuPAC 2016 – November 2016 Hans Weise, DESY

_

XFEL The last Process Line Welding on Sep 9, 2016

Module performance well above specs. and visible improvement with time Tunnel installation

Tunnel installation used sorting of modules based on AMTF performance

XM98 as scavenger module

vertical test (clipped at 31 MV/m) module performance

Remark:

Clipping at 31 MV/m is done due to max. available RF power; limit given by waveguide distribution.

	N _{cavs}	Average	RMS
VT	815	28.3 MV/m	3.5
СМ	815	27.5 MV/m	4.8

XFEL Energy Reach of European XFEL Modules

maximum energy reach

after tunnel installation and

according to accelerator module test

	Installed (GeV)	Module (GeV)			
CS1	1.	1.05			
CS2	3.89	4.06			
CS3	6.29	6.72			
CS4	8.91	9.49			
CS5	11.38	12.09			
CS6	13.92	14.76			
CS7	16.63	17.62			
CS8	19.42	20.44			
CS9	21.09	22.23			

the maximum energy during FEL operation needs to respect the bunch compressor (BC) working points

- 2.4 GeV nominal BC2 energy leads to approx. 19.5 GeV
- higher BC2 energy (e.g. 3.3 GeV) allows for > 20 GeV

increased max. energy assures higher availability

36

XFEL Accelerator Modules at AMTF & WATF

- During the 2nd production year AMTF module testing was performed without any delay.
- During the end of production the major non-conformity was overheating at the 70k coupler window; all respective warm coupler parts were exchanged.
- Waveguide tailoring was done for all modules.
- Successfully repaired modules were retested at AMTF when needed.
- Not installed are
 - XM8 (leaky cryogenic line)
 - XM46 & XM50 (inacceptable cav.performance)
 - XM99 (leaky beam line)
 - XM100 spare module & replaced by XM-2

European XFEL European XFEL Couplers were the by far the most challenging XFEL single items in the supply chain of the modules

- A total of 800 RF power couplers was produced at three different vendors
- The largest fraction was procured by LAL Orsay and produced by Thales / RI
- Approx. 20% were procured from CPI
- RF conditioning of all couplers was done at LAL Orsay at a rate of 10+ couplers/week
- Coupler delivery rate did not match the module assembly rate

ASSOCIATION

Optimized global process steps and sequence & daily improvements

XFEL Post Linac Beam Lines upstream of XS1

200 m transport line (eq. to 4 + 12 modules)200 m collimation

XTL		1.520m	1.530m	1.540m	1.550m	1.560m	1.570m	1.580m	1.590m	1.600m	1.610m	1.620m
			0	-			•	.			•	
	DACHS door	C+1								1 494		
1.620m	1.630m	1.640m	1.650m	1.660m	1.670m	1.680m	1.690m	1.700m	1.710m	1.720m	1.730m	1.740m
				·····						■ ■□		-
		<<< Cabling >>>									-	
	145			146			147		-	148	U	
1.7-0m	1.750m	1.760m	1.770m	1.780m	1.790m	1.800m	1.810m	1.820m	1.830m	1.840m	1.850m	1.860m
						1111						1 1
			I- B o 4 1 B o 4	▝█▋▆▝▇▓▆▖▏▆▖∁┥		Cont	tainer for the set of					
		149	1		150	4	50 ltr.		151	onig ***		
	•											
1.8 1 0m	1.870m	1.880m	1.890m	1.900m	1.910m	1.920m	1.930m	1.940m	1.950m	1.960m	1.970m	1.980m
								 ••• -	_	e	- 	
	<<< Cabling >>>									Cabling >>>		
152		153 1	54	155 156	157 15	8	159 160		161 162 163	164		
1.900m	1.990m	2.000m	2.010m	2.020m	2.030m	2.040m	2.050m	2.060m	2.070m	2.080m	2.090m	2.100m
		ırırı İ	****	199393335 199393	REFERENCE	BRARRA					1.1.1	
	· · · ·		- 			· · •·						•
		166 167		168			169		1	70		Wall
2.1 10 m	2.110m	XS1 2.120m	2.130m									
			1				200 r	n bear	n distr	ibution		
1				Sector 1								
							100 r	n XS1	dumn	line		
			DUMP				- 1001		uump			

European XFELEuropean XFELEuropean XFELThe Temporary Beamline uses Existing ModuleXFELSuspensions (wherever possible)

RuPAC 2016 – November 2016 Hans Weise, DESY

41

XFEL Beamline Installation close to XTL Tunnel End

Installation work mostly finished by end of 9/2016
The last few T2 beam line meters are done now

- All beam lines are suspended from the ceiling
- Engineering of 'hanging' system took long but result is very satisfying

European XFEL

Warm Beam Line Sections Transport Line to XS1 Beam Dump

- All beam dumps available and XS1 dump installed
- Special vehicle to exchange activated dumps

XFEL Installation on Top of XS1 Dump Cave

- XS1 installation includes transport towards XTDs
- The safety magnet is installed at the upstream end

XFEL Shielding and Personnel Interlock

- Shielding and personnel interlock done recently.
- Final internal check of the personnel interlock done Nov. 15/16.

EuropeanInstallation ActivitiesXFELSASE Undulator Sections

HED MID

FXE SPB

SQS SCS

SASE 3

- BINP and DESY teams have finished most of the mechanical vacuum work in the northern branch.
- The southern branch follows immediately.

SASE 1

SASE 2

......

With XTL closing all work force available for XTDs. experiments

courtesy of XFEL.EU

European SASE Undulator Sections With special air conditioning hutch

courtesy of XFEL.EU

European Optical Elements and Photon Diagnostics **XFEL** SASE1 Beamline

RuPAC 2016 – November 2016 Hans Weise, DESY

1

courtesy of XFEL.EU

EuropeanInstallation ActivitiesXFELPhoton Beam Lines

courtesy of XFEL.EU

EuropeanInstallation ActivitiesXFELPhoton Beam Lines

courtesy of XFEL.EU

XFEL SASE1 and SASE3 Hutches Installation

European XFEL

SASE1 Stations FXE and SPB/SFX _ just prior to instrument installation

RuPAC 2016 - November 2016 Hans Weise, DESY

52

XFEL Summary and Outlook

- 53
- The fascinating time of accelerator module production / testing / installation comes to an end
- Tunnel closure is now scheduled for beginning of 12/2016
- Technical commissioning continues after first cool-down
- Based on injector experience and accelerator module performance we are looking forward to reaching all design parameters
- The milestone ,first lasing possible' is scheduled 6 months after ,tunnel closure'
- User operation will start in 2017
- Full performance is expected approx. 1.5 years after first lasing

more than 1000 participants at the 2016 users' meeting

Hans Weise, DESY

and Research

