Numeric analysis of effective spectral width for the synchrotron radiation

V.G. Bagrov ¹ ² ³, D.M. Gitman ¹ ³ ⁴, A.D. Levin³, A.S. Loginov ¹, A.D.Saprykin ¹

¹Tomsk State University, Russia

²Institute of High Current Electronics, SB RAS, Tomsk, Russia

³Institute of Physics, University of Sao Paulo, Brazil

⁴P.N. Lebedev Physical Institute, Moscow, Russia

RuPAC, St. Petersburg, 2016

(日)

Outline

1 Radiated classical particle

2 Effective spectral width of SR polarization components

Objectives

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Introducing and computation effectife width of spectrum for SR (not exceeding 100 harmonics) in classical theory.

Radiated classical particle

• Spectral-angular distribution of SR polarization components [1, 2, 3]

$$W_{s} = W \sum_{\nu=1}^{\infty} \int_{0}^{\pi} f_{s}(\beta; \nu, \theta) \sin \theta d\theta; \qquad (1)$$

Total radiated power

$$W = \frac{2}{3} \frac{e^4 H^2 (\gamma^2 - 1)}{m_0^2 c^3};$$
 (2)

Spectral-angular densities

$$f_{2}(\beta; \nu, \theta) = \frac{3\nu^{2}}{2\gamma^{4}} J_{\nu}^{\prime 2}(x), \quad x = \nu\beta \sin\theta;$$

$$f_{3}(\beta; \nu, \theta) = \frac{3\nu^{2}}{2\gamma^{4}} \frac{\cos^{2}\theta}{\beta^{2}\sin^{2}\theta} J_{\nu}^{2}(x);$$

$$f_{\pm 1}(\beta; \nu, \theta) = \frac{3\nu^{2}}{4\gamma^{4}} \left[J_{\nu}^{\prime}(x) \pm \varepsilon \frac{\cos\theta}{\beta\sin\theta} J_{\nu}(x) \right]^{2};$$

$$f_{0}(\beta; \nu, \theta) = f_{2}(\beta; \nu, \theta) + f_{3}(\beta; \nu, \theta).$$
(3)

• Spectral densities of radiation in upper half-space

$$F_{s}^{(+)}(\beta;\nu) = \int_{0}^{\pi/2} f_{s}(\beta;\nu,\theta) \sin\theta d\theta; \qquad (4)$$

$$\begin{split} F_{2}^{(+)}(\beta;\nu) &= \frac{3\nu}{4\gamma^{4}\beta^{3}} \left[2\beta^{2}J_{2\nu}'(2\nu\beta) + \beta^{2}\int_{0}^{2\nu\beta}J_{2\nu}(x)dx - 2\nu\beta\int_{0}^{2\nu\beta}\frac{J_{2\nu}(x)}{x}dx \right],\\ F_{3}^{(+)}(\beta;\nu) &= \frac{3\nu}{4\gamma^{4}\beta^{3}} \left[2\nu\beta\int_{0}^{2\nu\beta}\frac{J_{2\nu}(x)}{x}dx - \int_{0}^{2\nu\beta}J_{2\nu}(x)dx \right],\\ F_{0}^{(+)}(\beta;\nu) &= \frac{3\nu}{4\gamma^{4}\beta^{3}} \left[2\beta^{2}J_{2\nu}'(2\nu\beta) - (1-\beta^{2})\int_{0}^{2\nu\beta}J_{2\nu}(x)dx \right],\\ F_{\pm1}^{(+)}(\beta;\nu) &= \frac{1}{2}F_{0}^{(+)}(\beta;\nu) \pm \frac{3\nu J_{2\nu}^{2}(\nu\beta)}{4\gamma^{4}\beta^{2}}. \end{split}$$

• Spectral sums of radiation in upper half-space

$$\Phi_{s}^{(+)}(\beta) = \sum_{\nu=1}^{\infty} F_{s}^{(+)}(\beta;\nu);$$
(5)

$$\Phi_{2}^{(+)}(\beta) = \frac{6+\beta^{2}}{16}, \quad \Phi_{3}^{(+)}(\beta) = \frac{2-\beta^{2}}{16}, \\ \Phi_{\pm 1}^{(+)}(\beta) = \frac{1}{4} \left[1 \pm \frac{3}{4} \chi_{1}(\beta) \right].$$
[4]

Effective spectral width of SR polarization components

• Partial spectrum densities [5]

$$P_{s}(\beta;\nu) = \frac{F_{s}^{(+)}(\beta;\nu)}{\Phi_{s}^{(+)}(\beta)};$$
(6)

• Effective width of the spectrum

$$\Lambda_{s}(\beta) = \nu_{s}^{(2)}(\beta) - \nu_{s}^{(1)}(\beta) + 1;$$
(7)

$$\sum_{\nu=\nu_{s}^{(1)}(\beta)}^{\nu_{s}^{(2)}(\beta)} P_{s}(\beta;\nu) - \frac{1}{2} \ge 0.$$
(8)

Table 1: Effective spectral width Λ_s and initial harmonic boundaries $\nu_s^{(1)}$, $\tilde{\nu}_s^{(1)}$ of linear-polarizated components of SR for range $\Lambda_s = 1$ till $\Lambda_s = 10$

٨	$\nu_{2}^{(1)}$	γ_2	$\tilde{\nu}_{2}^{(1)}$	$\tilde{\gamma}_2$	$\nu_{3}^{(1)}$	γ_3	$\tilde{\nu}_{3}^{(1)}$	$\tilde{\gamma}_3$
1	1	1.1434	1	1.1434	1	1.2363	1	1.2363
2	1	1.2955	1	1.2955	1	1.4519	1	1.4519
3	1	1.4179	2	1.3237	1	1.6126	1	1.6126
4	1	1.5215	2	1.4740	1	1.7435	1	1.7435
5	1	1.6121	2	1.5827	1	1.8554	1	1.8554
6	1	1.6932	2	1.6741	1	1.9540	2	1.8592
7	1	1.7669	3	1.6998	1	2.0428	2	1.9638
8	1	1.8347	3	1.7860	1	2.1238	2	2.0562
9	1	1.8977	3	1.8610	1	2.1986	2	2.1394
10	1	1.9566	3	1.9286	1	2.2680	2	2.2161

Table 2: Effective spectral width Λ_s and initial harmonic boundaries $\nu_s^{(1)}$, $\tilde{\nu}_s^{(1)}$ of linear-polarizated components of SR for range $\Lambda_s = 1$ till $\Lambda_s = 100$

٨	$\nu_{2}^{(1)}$	γ_2	$\tilde{\nu}_{2}^{(1)}$	$\tilde{\gamma}_2$	$\nu_{3}^{(1)}$	γ_3	$\tilde{\nu}_{3}^{(1)}$	$\tilde{\gamma}_3$
1	1	1.1434	1	1.1434	1	1.2363	1	1.2363
11	1	2.0120	3	1.9906	1	2.3329	2	2.2868
21	2	2.4538	5	2.4215	1	2.8422	2	2.8217
31	3	2.7731	6	2.7499	1	3.2053	3	3.1740
41	3	3.0316	7	3.0121	1	3.4998	3	3.4793
51	4	3.2515	8	3.2342	1	3.7528	3	3.7383
61	4	3.4450	9	3.4289	1	3.9700	4	3.9502
71	5	3.6191	10	3.6039	1	4.1678	4	4.1513
81	5	3.7776	11	3.7631	1	4.3432	4	4.3295
91	6	3.9247	12	3.9107	1	4.5039	4	4.4919
100	6	4.0482	12	4.0381	1	4.6374	4	4.6263

Table 3: Effective spectral width Λ_s and initial harmonic boundaries $\nu_s^{(1)}$, $\tilde{\nu}_s^{(1)}$ of circle-polarizated components of SR for range $\Lambda_s = 1$ till $\Lambda_s = 10$

٨	$\nu_{-1}^{(1)}$	γ_{-1}	$\tilde{\nu}_{-1}^{(1)}$	$\tilde{\gamma}_{-1}$	$\nu_1^{(1)}$	γ_1	$\tilde{\nu}_{1}^{(1)}$	$\tilde{\gamma}_1$
1	1	1.1062	1	1.1062	1	1.1712	1	1.1712
2	1	1.2348	1	1.2348	1	1.3411	1	1.3411
3	1	1.3440	2	1.3233	1	1.4737	1	1.4737
4	2	1.4394	2	1.4394	1	1.5843	2	1.4987
5	2	1.5323	3	1.4808	1	1.6802	2	1.6210
6	2	1.6125	3	1.5854	1	1.7657	2	1.7211
7	2	1.6841	3	1.6686	1	1.8431	2	1.8082
8	2	1.7493	4	1.7015	1	1.9142	2	1.8860
9	2	1.8094	4	1.7786	1	1.9800	2	1.9570
10	2	1.8655	4	1.8455	1	2.0416	2	2.0225

Table 4: Effective spectral width Λ_s and initial harmonic boundaries $\nu_s^{(1)}$, $\tilde{\nu}_s^{(1)}$ of circle-polarizated components of SR for range $\Lambda_s = 1$ till $\Lambda_s = 100$

٨	$\nu_{-1}^{(1)}$	γ_{-1}	$\tilde{\nu}_{-1}^{(1)}$	$\tilde{\gamma}_{-1}$	ν_1	γ_1	$\tilde{\nu}_{1}^{(1)}$	$\tilde{\gamma}_1$
1	1	1.1062	1	1.1062	1	1.1712	1	1.1712
11	3	1.9197	5	1.8721	1	2.0995	3	2.0448
21	4	2.3402	7	2.3139	1	2.5522	4	2.5154
31	5	2.6449	9	2.6233	2	2.8828	4	2.8659
41	6	2.8911	11	2.8712	2	3.1505	5	3.1319
51	8	3.1007	13	3.0814	2	3.3781	6	3.3585
61	9	3.2851	14	3.2714	3	3.5781	6	3.5653
71	10	3.4505	16	3.4361	3	3.7581	7	3.7434
81	11	3.6013	17	3.5901	3	3.9219	7	3.9114
91	12	3.7403	19	3.7281	3	4.0727	8	4.0609
100	13	3.8570	20	3.8465	4	4.1997	9	4.1860

◆□> <□> <=> <=> <=> <=> <=> <=> <=>

Summary

(日)

• γ , corresponding to given effective spectral width Λ_s , is limited by

$$\gamma_{\mathfrak{s}}(\Lambda_{\mathfrak{s}}-1,\nu_{\mathfrak{s}}^{(1)}(\Lambda_{\mathfrak{s}})) < \gamma \leqslant \gamma_{\mathfrak{s}}(\Lambda_{\mathfrak{s}},\nu_{\mathfrak{s}}^{(1)}(\Lambda_{\mathfrak{s}})); \qquad (9)$$

$$\gamma_{s}(\Lambda_{s},k) > \gamma_{s}(\Lambda_{s},n), \quad \nu_{s}^{(1)}(\Lambda_{s}) \leqslant k < n \leqslant \tilde{\nu}_{s}^{(1)}(\Lambda_{s}). \quad (10)$$

• At a fixed values Λ_s the corresponding values γ_s obey the inequalities

$$\gamma_3 > \gamma_1 > \gamma_0 > \gamma_2 > \gamma_{-1} \,. \tag{11}$$

• At a fixed γ , the corresponding values of Λ_s are restricted by

$$\Lambda_3 < \Lambda_1 < \Lambda_0 < \Lambda_2 < \Lambda_{-1} \,. \tag{12}$$

References

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんの

- 1. A. A. Sokolov, I. M. Ternov. Synchrotron Radiation . Akademie Verlag, 1968.
- 2. Herman Winick, S. Doniach. Synchrotron Radiation Research. Plenum Press. 1980.
- 3. V. G. Bagrov, G. S. Bisnovaty Kogan, V. A. Bordovitsyn, A. V. Borisov, O. F. Dorofeev, V. Ya. ?pp, Yu. L. Pivovarov, O. V. Shorokhov, V. Ch. Zhukovsky. Radiation Theory of Relativistic Particles. Moscow, Fizmatlit. 2002.
- 4. V. G. Bagrov, M. V. Dolzhin, V. B. Tlyachev, A. T. Jarovoi. Evolution of the Angular Distribution of Circularly Polarized Synchrotron Radiation with Charge Energy. Russian Physics Journal. 2004, v. 47, 4, p. 414-423.

- 5. V. G. Bagrov, M. V. Dolzhin, K. G. Seravkin, V. M. Shakhmatov. Partial Contributions of Individual Harmonics to the Power of Synchrotron Radiation.Russian Physics Journal. 2006, v. 49, 7, p. 681-689.
- 6. V. G. Bagrov, D. M. Gitman, A. D. Levin, A. S. Loginov, A. D. Saprykin. Effective Spectrum Width of the Synchrotron Radiation. The European Physical Journal. C. 2015, v. 75, No. 11, 555 (6 pages).