# Low-β high gradient S-band accelerating structure for hadron therapy linacs\*

**Evgeny Savin** 

National Research Nuclear University MEPhI

\* This work was supported by the U.S. Department of Energy, Office of High Energy Physics, under Accelerator Stewardship Contract No. 0000219678 and STTR contract DE-SC0015717, awarded to Argonne National Laboratory and RadiaBeam Systems, LLC.

#### Team

- Argonne National Laboratory
  - Peter N Ostroumov Pl
  - Adyta Goel
  - Alireza Nassiri
  - Alexander Plastun
  - Brahim Mustapha

#### • RadiaBeam Systems, LLC

- Sergey V Kutsaev PI
- Ronald Agustsson
- Luigi Faillace
- Alex Murokh
- Evgeny Savin (also in NRNU MEPhI)
- Alexander Smirnov

#### Content

- Proton and carbon therapy
- Advanced Compact Carbon Ion Linac
- High gradient limits
- Accelerating structure for β=0.5-0.7
- Accelerating structure for β=0.43
- Accelerating structure for β=0.3
- Conclusions

#### X-ray and ion therapy

- Conventional compact photon therapy linacs deliver a significant amount of dose outside the tumor region
- High-energy protons and heavy ions physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum (Bragg peak)
- For particles the dose before the tumor is ~50% less that at the tumor region
- Carbon ions have much narrower Bragg peak comparing to protons ~ 3 times higher efficiency
- Carbon ions ~35% better treat "radioresistant" hypoxic cells than protons, have higher Radio-Biological Efficiency
- Lower scattering before the tumor for carbons



#### Accelerators for hadron therapy

|                 | Cyclotron                                  | Synchrotron                           | Linac                                 |
|-----------------|--------------------------------------------|---------------------------------------|---------------------------------------|
| Particles       | p or C                                     | р, С                                  | р, С                                  |
| Variable energy | With degrader                              | From pulse to pulse without<br>losses | From pulse to pulse without<br>losses |
| Beam quality    | Bad quality due to beam<br>energy degrader | Good                                  | Good                                  |
| Repetition rate | CW                                         | < 1 Hz                                | < 300 Hz                              |
| Compactness     | Best                                       | Good                                  | Depends on gradient                   |

#### Advanced Carbon Ion Linac (ACCIL) Argonne S Y S T E

- 200-250 MeV for protons and 400-450 MeV/u for <sup>12</sup>C<sup>5+</sup> in order to penetrate up to 30 cm inside the human tissue
- Total linac length 45 m with 50 MV/m accelerating gradient at S-band
- 500 ns pulse at 120 Hz rep. rate
- 10<sup>10</sup> protons/second (27μA current) and 10<sup>9</sup> ions/second (13.4μA particle current) intensity



### High gradient limits

#### Maximum surface electric field

A reliable surface field in structures with nose cones is <160 MV/m (experienced in RF guns and Side Coupled linacs)

#### Pulsed heating

 $\Delta T = \frac{H_{max}^2 \sqrt{t_{pulse}}}{\sigma \delta \sqrt{\pi \rho' c_{\varepsilon} k}} \qquad \text{for annealed copper} \\ \Delta T = \frac{\Delta T_{max}^2 \sqrt{t_{pulse}}}{\sigma \delta \sqrt{\pi \rho' c_{\varepsilon} k}} \qquad \Delta T_{max} = 50 \text{ K}$ 

where  $\Delta T$  – is the pulsed heating value [K], H<sub>max</sub> – maximum surface magnetic field [MA/m] and t<sub>pulse</sub> – is the total pulse length including transient processes [ $\mu$ s].  $\sigma$  – electrical conductivity,  $\delta$ -skin depth,  $\rho'$ - density,  $c_{\varepsilon}$ - specific heat, k – thermal conductivity of the metal.

Modified Poynting vector 
$$S_c = Re\{\overline{S}\} + \frac{Im}{S}$$

For 1.5 µs pulse length and S band the limit is ~2.8 MW/mm^2 (10^-6 bpp/m breakdown rate).\* This parameter hasn't been confirmed for S-band linacs yet, but we will keep all 3 breakdown parameters below limits.

> \*A. Grudiev et al. RF design of a novel S-band backward traveling wave linac for proton therapy, Proceedings LINAC'14

#### $\beta$ =0.3-0.7 accelerating structures. Main goals

- 19 accelerating tanks with fixed phase velocities
- Accelerating gradient 50 MV/m
- S-band
- Pulse flat-top 500 ns
- Rep. frequency 120 Hz
- Consider standing and traveling wave structures

## β=0.5-0.7 Traveling wave structures

- Disk-loaded waveguide based structure with magnetic coupling is used
- Constant gradient is chosen
- One can control group velocity along the linac keeping aperture radius constant
- There is pulsed heating at magnetic coupling spots





| β                          | 0.5  | 0.6  | 0.7  |  |
|----------------------------|------|------|------|--|
| Shunt impedance,<br>MOhm/m | 56   | 58   | 67   |  |
| Filling time, ns           | 1000 | 1000 | 1500 |  |
| P <sub>in peak</sub> , MW  | 40   | 54   | 54   |  |
|                            |      |      | u/1/ |  |

RuPAC 2016

#### β=0.43 Traveling wave structure

• Although noses increase shunt impedance, surface E field is at the breakdown limit level

#### ΔF=-0.316 MHz

Iris thickness 2 →4 mm Stress 81 → 54 MPa



|                                 | Noses 🔴 | No noses 🛛 🔵 |
|---------------------------------|---------|--------------|
| Mode                            | 5π/6    | 5π/6         |
| Eacc, MV/m                      | 50      | 50           |
| Emax, MV/m                      | 200     | 90           |
| Shunt impedance, MOhm/m         | 51      | 36           |
| Group velocity, %               | 0.4     | 0.4          |
| Pulsed Heating, K (limit 50)    | 11      | 18           |
| <sc>, MW/mm^2 (limit ~2.8)</sc> | 0.7     | 1.3          |
|                                 |         | 10           |

## β=0.43 Standing wave geometries

- Biperiodic (BPS), Side coupled (SCL) and Disks and Washers (DAW) compensated structures were compared to BTW
- BTW shows higher shunt impedance at lower peak fields
- BTW filling time is lower

| Structure type                  | BPS  | BTW 🔵 |
|---------------------------------|------|-------|
| Coupling, %                     | 4.6  |       |
| Shunt impedance, MOhm/m         | 32   | 36 🔍  |
| Eacc, MV/m                      | 50   | 50    |
| Emax, MV/m                      | 112  | 90    |
| Pulsed Heating, K (limit 50)    | 15.7 | 18    |
| <sc>, MW/mm^2 (limit ~2.8)</sc> | 1.35 | 1.3   |
| 100% filling time, ns           | 1500 | 1000  |
| Power (20 cells, 50 MV/m), MW   | 35.5 | 30 🌒  |





E. Savin et al.

## β=0.3 BTW

- Accelerating cell length is too small to consider BPS => BTW is chosen
- Highest shunt impedance is at  $2\pi/3$  mode
- Cell length is too small -> needs to be increased



Value Parameter D hole, mm 8 3 a,mm 1.5 t, mm L, mm 10.5 Shunt impedance, 23.5 MOhm/m Emax, MV/m 112.5 Pulsed Heating, K 33 <Sc>, MW/mm<sup>2</sup> 1.7

 $\theta$ =2 $\pi$ /3, 50 MV/m



## β=0.3 BTW at -1 spatial harmonic

- 5π/6 mode allows to achieve the highest shunt impedance at -1 spatial harmonic
- In the longer structure noses can be introduced to increase shunt impedance
- Elliptical noses profile allows to decrease the maximum surface fields

|                         | m=0,<br>2π/3 | m=-1, 5π/6,<br>no noses | m=-1, 5π/6,<br>noses |
|-------------------------|--------------|-------------------------|----------------------|
| t, mm                   | 2            | 3                       | 2.5                  |
| <sc>, MW/mm^2</sc>      | 1.4          | 2.03                    | 1.3                  |
| Pulsed heating, K       | 24           | 33.46                   | 28.2                 |
| Emax, MV/m              | 92.5         | 130                     | 156.5                |
| Shunt impedance, MOhm/m | 22 🧧         | 18.58                   | 31.7 🔵               |
| ΔT, C (22C ambient)     | 39.2         | 21.2                    | 15.6                 |
| Von Mises stress, MPa   | 57           | 75 🔴                    | 59.6                 |
| Length, mm              | 10.5         | 21                      | 21                   |



E. Savin et al.

#### Conclusions

- Carbon ion therapy is more efficient than X-ray and have higher Radio Biological Efficiency
- Treatment with linacs is more efficient than with cyclotrons and synchrotrons due to the better beam quality and faster energy variation
- Argonne National Laboratory and RadiaBeam Systems developed an Advanced Compact Carbon Ion Linac, which accelerates carbon ions up to 450 MeV/u at 45 m length
- S-band accelerating structures were developed for both protons and carbon ions acceleration in the velocity range β=0.3..0.7
- BTW and BPS for  $\beta$ =0.43 were designed to satisfy requirements of a compact carbon ion linac
- For β=0.3 a BTW accelerating structure was designed to operate at -1 spatial harmonic
- An advantage of using a -1 spatial harmonic for very low betas over the fundamental spatial harmonic is shown

#### References

- P.N. Ostroumov et al. ,Compact Carbon Ion Linac, Proceedings of Na-PAC 2016, Chicago, IL, USA
- A. Plastun et al., Beam Dynamics Studies for a Compact Carbon Ion Linac for Therapy, Proceedings of LINAC 2016, East-Lansing, MI, USA
- S.V. Kutsaev et al., High Gradient Accelerating Structures for Carbon Therapy Linac, Proceedings of LINAC 2016, East-Lansing, MI, USA

#### Accelerating efficiency. Transit time factor

- S-band was chosen for high gradient section, because it was proven to sustain 50 MV/m\*
- Pillbox cavity typical S-band structure



\*S.V. Kutsaev et al., High Gradient Accelerating Structures for Carbon Therapy Linac, Proceedings of LINAC 2016, East-Lansing, MI, USA

Low-beta high gradient S-band accelerating structure for hadron therapy linacs