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Abstract

We start with a qualitative approach based on the de-

tailed analysis of smoothness classes of the underlying func-

tional spaces provided possible evaluation of the dynamical

aperture in general nonlinear/polynomial models of parti-

cle/beam motion in accelerators. We present the applica-

tions of discrete multiresolution analysis technique to the

maps which arise as the invariant discretization of continu-

ous nonlinear polynomial problems. It provides a general-

ization of the machinery of local nonlinear harmonic anal-

ysis, which can be applied for both discrete and continuous

cases and allows to construct the explicit multiresolution

decomposition for solutions of discrete problems which are

the correct discretizations of the corresponding continuous

cases.

INTRODUCTION

The estimation of the dynamic aperture of accelerators

is an important, complicated and long standing problem.

From the formal point of view the aperture is some border

between two types of dynamics: relative regular and pre-

dictable motion along of acceptable orbits or fluxes of or-

bits corresponding to KAM tori and stochastic motion with

particle losses blown away by the Arnold diffusion and/or

chaotic motions. According to the standard point of view

this transition is being done by some analogues with map

technique [1]. Consideration for aperture of n-pole Hamil-

tonians with kicks
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is done by linearisation and discretization of canonical

transformation and the result resembles (pure formally)

standard mapping. This leads, by using the Chirikov crite-

rion of resonance overlapping, to the evaluation of aperture

via amplitude of the following global harmonic representa-

tion:
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.

The goal of this paper is two-fold and presents a sketch

of alternative approaches located beyond any linearization

or perturbation approaches. In the next part, we consider

some qualitative criterion which is based on the attempts of
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more realistic understanding of the existing difference be-

tween motion in KAM region and stochastic regions: mo-

tion in KAM regions may be described by regular functions

only (without the influence of complicated internal struc-

tures leading to nonuniform hyperbolicity generating chaos)

while motion in stochastic regions/layers may be described

by functions with internal (self-similar, e.g.) structures (def-

initely, created by actions of symmetry generated groups,

like discrete groups, or by actions of hidden symmetries of

background functional space, like affine group in the most

simple case) i.e. fractal type functions which realized the

proper orbits [2]. In the subsequent section according to the

invariant Marsden-Veselov approach, we consider symplec-

tic and Lagrangian background for the case of discretization

of flows by the corresponding maps [3]. Affter that, in the

next section, we present the construction of the correspond-

ing solutions by applications of the multiscale approach of

A. Harten [4] based on generalization of multiresolution

analysis for the case of maps. Such approaches provide the

principles and the possibilities for the control of aperture

behaviour in the space of machine parameters. All details,

constructions, and results can be found in [5].

QUALITATIVE ANALYSIS

The fractal or chaotic image is a function (distribution)

which has structure at all underlying scales. Such objects

have additional nontrivial details on any level of resolution.

But they cannot be represented by smooth functions, be-

cause they resemble constants at small scales [2]. We need

to find self-similarity behaviour during movement to small

scales for the functions describing non-regular motion. So,

if we look on a “fractal” function f (e.g. the Weierstrass

function) near an arbitrary point at different scales, we find

the same function up to the scaling factor. Consider the fluc-

tuations of such function f near some point x0

floc (x) = f (x0 + x) − f (x0), (3)

then we have the renormalization (group)–like be-

haviour/transformation

fx0
(λx) ∼ λα(x0) fx0

(x), (4)

where α(x0) is the so-called local scaling exponent or

Hölder exponent of the function f at x0. According to [2]

general functional spaces and scales of spaces can be charac-

terized through wavelet coefficients or wavelet transforms.

Let us consider continuous wavelet transform

Wg f (b, a) =

∫

Rn

dx
1

an
ḡ

(

x − b

a

)

f (x),
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b ∈ Rn , a > 0, w.r.t. analyzing wavelet g, which is

strictly admissible, i.e.

Cg ,g =

∫

∞

0

da

a
|ĝ(ā k)|2 < ∞.

Wavelet transform has the following covariance property un-

der action of the underlying affine group:

Wg(λa, x0 + λb) ∼ λα(x0)Wg(a, x0 + b). (5)

So, if the Hölder exponent of (distribution) f (x) around the

point x = x0 is h(x0) ∈ (n, n+1), then we have the following

behaviour of f (x) around x = x0:

f (x) = c0 + c1(x − x0) + . . . + cn(x − x0)n + c |x − x0 |
h(x0).

Let the analyzing wavelet has n1 (> n) vanishing moments,

then

Wg( f )(x0 , a) = Cah(x0)Wg( f )(x0 , a) (6)

and

Wg( f )(x0 , a) ∼ ah(x0) ,

when a → 0. But if f ∈ C∞ at least in the point x0, then

Wg( f )(x0 , a) ∼ an1 ,

when a → 0 [2]. This shows that the localization of wavelet

coefficients at small scale is linked to local regularity. As a

rule, the faster the wavelet coefficients decay, the more the

analyzed function is regular. So, transition from regular mo-

tion to chaotic one may be characterised as the changing of

the Hölder/scaling exponent of the function which describes

motion. This gives a criterion of the appearance of fractal

behaviour and may determine, at least in principle, the dy-

namic aperture as well as the dependence on parameters of

the type of behaviour.

INVARIANT DISCRETIZATION

Discrete variational principles lead to evolution dynam-

ics analogous to the Euler-Lagrange equations [3]. Let Q

be a configuration space, then a discrete Lagrangian is a

map L : Q × Q → R, L is obtained by approximating the

given Lagrangian. For N ∈ N+ the action sum is the map

S : QN+1 → R defined by

S =

N−1
∑

k=0

L(qk+1 , qk ), (7)

where qk ∈ Q, k ≥ 0. The action sum is the discrete analog

of the action integral in continuous case. Extremizing S

over q1 , ..., qN−1 with fixing q0 , qN we have the discrete

Euler-Lagrange equations (DEL):

D2L(qk+1 , qk ) + D1(qk , qq−1) = 0, (8)

for k = 1, ..., N − 1.

Let

Φ : Q × Q → Q × Q (9)

and

Φ(qk , qk−1) = (qk+1 , qk ) (10)

is a discrete function (map), then we have for DEL:

D2L ◦ Φ + D1L = 0 (11)

or in coordinates qi on Q we have DEL

∂L

∂qi
k

◦ Φ(qk+1 , qk ) +
∂L

∂qi
k+1

(qk+1 , qk ) = 0. (12)

It is very important that the map Φ exactly preserves the

discretization of the symplectic form ω [3]:

ω =
∂2L

∂qi
k
∂q

j

k+1

(qk+1 , qk )dqik ∧ dq
j

k+1
(13)

MAPS: MULTIRESOLUTION

Our approach to solutions of equations (12) is based on

applications of general and very efficient methods devel-

oped by A. Harten [3], who produced a "General Frame-

work" for multiresolution representation of discrete data. It

is based on consideration of basic operators, decimation and

prediction, which connect adjacent resolution levels. These

operators are constructed from two basic blocks: the dis-

cretization and reconstruction operators. The former ob-

tains discrete information from a given continuous func-

tions (flows), and the latter produces an approximation to

those functions, from discrete values, in the same func-

tion space to which the original function belongs. A "new

scale" is defined as the information on a given resolution

level which cannot be predicted from discrete information

at lower levels. If the discretization and reconstruction are

local operators, the concept of "new scale" is also local. The

scale coefficients are directly related to the prediction er-

rors, and thus to the reconstruction procedure. If scale co-

efficients are small at a certain location on a given scale, it

means that the reconstruction procedure on that scale gives

a proper approximation of the original function at that par-

ticular location. This approach may be considered as some

generalization of standard wavelet analysis approach. It al-

lows to consider multiresolution decomposition when usual

approach is impossible (singular, non-regular behaviour).

We demonstrated the discretization of kick/Dirac function

by wavelet packets on Fig. 1 and Fig. 2.

Let F be a linear space of mappings

F ⊂ { f | f : X → Y }, (14)

where X ,Y are linear spaces. Let also Dk be a linear oper-

ator

Dk : f → {vk }, vk = Dk f , v
k
= {vki }, vki ∈ Y . (15)

This sequence corresponds to k level discretization of X .

Let

Dk (F) = V k
= span{ηki } (16)
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and the coordinates of vk ∈ V k in this basis are v̂k = {v̂k
i
},

v̂k ∈ Sk :

vk =
∑

i

v̂ki η
k
i , (17)

Dk is a discretization operator. Main goal is to design

a multiresolution scheme (MR) [4] that applies to all se-

quences s ∈ SL , but corresponds for those sequences v̂L ∈

SL , which are obtained by the discretization (14).

Since Dk maps F onto V k then for any vk ⊂ V k there

is at least one f in F such that Dk f = vk . Such correspon-

dence from f ∈ F to vk ∈ V k is reconstruction and the

corresponding operator is the reconstruction operator Rk :

Rk : Vk → F , DkRk = Ik , (18)

where Ik is the identity operator in V k (Rk is right inverse

of Dk in V k ).

Given a sequence of discretization {Dk } and sequence of

the corresponding reconstruction operators {Rk }, we define

the operators Dk−1
k

and Pk
k−1

Dk−1
k = Dk−1Rk : Vk → Vk−1 (19)

Pk
k−1 = DkRk−1 : Vk−1 → Vk

If the set Dk is nested [4], then

Dk−1
k Pk

k−1 = Ik−1 (20)

and we have for any f ∈ F and any p ∈ F for which the

reconstruction Rk−1 is exact:

Dk−1
k (Dk f ) = Dk−1 f , Pk

k−1(Dk−1p) = Dk p (21)

Let us consider any vL ∈ V L , Then there is f ∈ F such that

vL = DL f , (22)

and it follows from (21) that the process of successive deci-

mation [4]

vk−1
= Dk−1

k vk , k = L, ..., 1 (23)

yields for all k

vk = Dk f (24)

Thus the problem of prediction, which is associated with

the corresponding MR scheme, can be stated as a problem

of approximation: knowing Dk−1 f , f ∈ F, find a "good ap-

proximation" for Dk f . It is very important that each space

V L has a multiresolution basis

B̄M = {φ̄
0,L
i
}i , {{ψ̄

k ,L
j
} j }

L
k=1 (25)

and that any vL ∈ V L can be written as

vL =
∑

i

v̂0
i φ̄

0,L
i

+

L
∑

k=1

∑

j

dkj ψ̄
k ,L
j

, (26)

where {dk
j
} are the k scale coefficients of the associated MR,

{v̂0
i
} is defined by (17) with k = 0. If {Dk } is a nested se-

quence of discretization [4] and {Rk } is any corresponding

sequence of linear reconstruction operators, then we have

from (26) for vL = DL f applying RL :

RLDL f =
∑

i

f̂ 0
i φ

0,L
i

+

L
∑

k=1

∑

j

dkjψ
k ,L
j

, (27)

φ
0,L
i
∈ F , (28)

ψ
k ,L
j
= RLψ̄

k ,L
j
∈ F ,D0 f =

∑

f̂ 0
i η

0
i .

When L → ∞ we have sufficient conditions which ensure

that the limiting process in (27, 28) yields a multiresolution

basis for F (14). Then, according to (25), (26) we have a

very useful representation via the multiscale form for solu-

tions (26) of map version (12) of initial equations obtained

from (1) as well as for various maps constructions which

are discrete counterparts for continuous cases considered

in [5].
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Figure 1: Kick/Delta function.
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Figure 2: Discretization via wavelet packets.
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