
APPLICATION OF GPGPUs AND MULTICORE CPUs IN OPTIMIZATION

OF SOME OF THE MPDROOT CODES*

A. Fatkina
#
, O. Iakushkin , N. Tikhonov, St. Petersburg State University, St. Petersburg, Russia

Abstract
We analyzed the ways to optimize MPDRoot

algorithms using existing solutions from external

libraries. We also examined the libraries designed to work

with graphics accelerators and multi-core CPUs, such as

cuRAND, cuFFT and OpenCL FFT.

The paper describes the ways to expedite a portion of

Kalman filter by transferring it to GPUs or multi-core

CPUs using the implementation included into the

MPDRoot package.

INTRODUCTION

MPD (Multi Purpose Detector) is a part of NICA

(Nuclotron-based Ion Collider fAcility) [1]. MPDRoot is

a framework based on ROOT and FairRoot technologies.

It is designed to simulate experiments conducted on MPD

and to analyze the resulting data. According to the MPD

documentation, collected data can be huge. Fast data

processing is necessary to cope with extreme data sets.

Thus it is a task of crucial importance that algorithms

work well in parallel and distributed environments [2-6]

In this paper, we look into how Graphic Processing

Units (GPUs) and multicore CPUs may be applied in

MPDRoot project optimization.

PERFORMANCE ANALYSIS OF

MPDROOT FRAMEWORK TESTS

The following methods were used to analyze MPDRoot

framework: • Doxygen utility was used to generate classes and

functions dependency graphs. It was also used to

code navigation. • ValgrindCallgrind tool was used to profile the

package. By using this we got callgraphs for

MPDRoot tests.

We selected some algorithms that can be ported on

coprocessor architectures and seems to be optimizable.

PROPOSED OPTIMIZATIONS

The following algorithms were considered: • Fast Fourier Transform; • Random number generation; • Kalman Filter.

Figure 1 shows calls of the Rndm() function in the

ROOT framework. It is called over 32 million times in the

runMC test. The function employs MT (Mersenne

Twister) algorithm described in [7].

There is a modified version of this algorithm — SFMT

(SIMD-oriented Fast Mersenne Twister) [8], which is

twice as fast owing to the SIMD (Single Instruction

Multiple Data) principle. It should be noted that the

version of MT described in that paper can only be

executed on a CPU with a vector processing unit (VPU).

СuRAND library may be used as an alternative to

ROOT-based MT. It makes it possible to generate random

numbers on GPGPU (general-purpose computing for

graphics processing units) using CUDA architecture. The

library provides a wide range of generators including MT

and MTGP (Mersenne Twister for Graphic Processors)

[9].

The use of the сuRAND library to generate random

numbers in the GEANT4 framework was proposed at the

Annual Science Meeting in 2013 [10]. This approach can

either be integrated into the MPD Root project directly

with the cuRAND library or indirectly by using

GEANT4.

Kalman Filter

MPD Root reconstructs the particles’ tracks using

Kalman filter. This algorithm is sequential and uses

matrixes.

Figure 1: Profiling data - Random number generation.

 __

* supported by SPbU (Saint Petersburg State University) grants

9.37.157.2014, 0.37.155.2014 and Russian Foundation for Basic

Research grant (project no. 16-07-01113 and no. 16-07-01111).

st035020@student.spbu.ru

Random Number Generation

WEPSB025 Proceedings of RuPAC2016, St. Petersburg, Russia

ISBN 978-3-95450-181-6

416C
op

yr
ig

ht
©

20
17

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Modern trends in accelerators

Figure 2: Profiling data - Kalman Filter: MnvertLocal function.

Figure 2 shows the call graph of

MpdKalmanFilter::MnvertLocal() function, which

implements the Kalman filter algorithm. It utilizes nested

loops to invert matrixes. Figure 3 shows a schematic

representation of MnvertLocal function algorithm. Each

loop executes similar instructions independent of the

values obtained during the previous iterations. They can,

therefore, be distributed to multiple cores of the CPU and

vectorized, or transferred to the GPGPU.

An alternative way to expedite Kalman filter track

reconstruction algorithm is described in [11]. In the paper,

the authors proposed using SIMD instructions to optimize

the Kalman filter in the CBM@FAIR (Compressed

Baryonic Metter) experiment. They tested the algorithm

before and after optimization and saw a major

improvement: the authors managed to increase the

algorithm execution speed by a factor of 120.

Fast Fourier Transform

FFTW library is used in the digitizing algorithm of the

TPC detector in TVirtualFFT class, a Fourier

transformation shell in the ROOT framework. It provides

interfaces to work with OpenMP and MPI technologies.

However, it does not support graphic co-processors.

There are multi-core-oriented libraries, such as cuFFT

and clFFT, which implement algorithms included into

FFTW.

However, the use of multiple cores does not necessarily

influence the execution time of code segments. In some

cases, it can even increase their total processing time. For

Figure 3: MnvertLocal function scheme.

Proceedings of RuPAC2016, St. Petersburg, Russia WEPSB025

Modern trends in accelerators

ISBN 978-3-95450-181-6

417 C
op

yr
ig

ht
©

20
17

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

instance, according to the available tests, Fourier

transform algorithm represents a minor part of MPDRoot

project compared to the other package components (less

than 0.01%). This allows to conclude that running these

code segments on multiple cores will not reduce the test

processing time.

CONCLUSION

In this paper, we consider some of the possible

optimizations for MPDRoot project with coprocessor

technologies. We proposed some recommendations based

on both external libraries and algorithms based on

MPDRoot codes.

ACKNOWLEDGMENT

This research was partially supported by SPbU (Saint

Petersburg State University) grants 9.37.157.2014,

0.37.155.2014 and Russian Foundation for Basic

Research grant (project no. 16-07-01113 and no. 16-07-

01111).

REFERENCES

[1] MPD Collaboration, MPD Concept Design Repot;

http://mpd.jinr.ru

[2] A.Zinchenko, Y.Murin, V.Kondrat’ev, N.Prokof’ev,

“Modeling of the internal tracking system of the

NICA/MPD detector.” Physics of Particles and Nuclei

Letters, 13(4), pp.483-491 (2016).

[3] O. Iakushkin, "Intellectual scaling in a distributed cloud

application architecture: A message classification

algorithm", Stability and Control Processes in Memory of

VI Zubov (SCP), 2015 International Conference, IEEE, p.

634-637. (2015).

[4] S. Abrahamyan, S. Balyan, A. Muradov, V. Korkhov, A.

Moskvicheva, and O. Iakushkin. "Development of M-

Health Software for People with Disabilities." In

International Conference on Computational Science and Its

Applications, Springer International Publishing, p. 468-

479(2016).

[5] O. Iakushkin, O. Sedova, G. Valery, “Application Control

and Horizontal Scaling in Modern Cloud Middleware.”,

Transactions on Computational Science XXVII, Springer

Berlin Heidelberg, p. 81-96.(2016).

[6] Y. Shichkina, A. Degtyarev, D. Gushchanskiy, and O.

Iakushkin. "Application of Optimization of Parallel

Algorithms to Queries in Relational Databases.",

International Conference on Computational Science and Its

Applications, Springer International Publishing, p. 366-378

(2016).

[7] M. Matsumoto, N. Takuji, "Mersenne twister: a 623-

dimensionally equidistributed uniform pseudo-random

number generator", ACM Transactions on Modeling and

Computer Simulation, Vol. 8 No. 1 p. 3-30 (1998).

[8] M. Saito, M. Matsumoto, "SIMD-oriented Fast Mersenne

Twister: a 128-bit Pseudorandom Number Generator",

Monte Carlo and Quasi-Monte Carlo Methods 2006, p. 607

— 622 (2008).

[9] M. Saito, M. Matsumoto, "Variants of Mersenne Twister

Suitable for Graphic Processors" ACM Transactions on

Mathematical Software, Vol. 39 No. 2 (2013).

[10] Soon Yung Jun, J. Apostolakis, "GPUs in GEANT4",

Annual Concurrency Meeting, February 2013.

[11] S. Gorbunov, U.Kebschull, I. Kisel, W. F. J. Müller, V.

Lindenstruth, "Fast SIMDized Kalman filter based track

fit", Computer Physics Communications, Vol. 178, No. 5,

p. 374-383 (2008).

WEPSB025 Proceedings of RuPAC2016, St. Petersburg, Russia

ISBN 978-3-95450-181-6

418C
op

yr
ig

ht
©

20
17

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Modern trends in accelerators

