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Abstract
We analyzed the ways to optimize MPDRoot
algorithms using existing solutions from external

libraries. We also examined the libraries designed to work
with graphics accelerators and multi-core CPUs, such as
cuRAND, cuFFT and OpenCL FFT.

The paper describes the ways to expedite a portion of
Kalman filter by transferring it to GPUs or multi-core
CPUs using the implementation included into the
MPDRoot package.

INTRODUCTION

MPD (Multi Purpose Detector) is a part of NICA
(Nuclotron-based Ion Collider fAcility) [1]. MPDRoot is
a framework based on ROOT and FairRoot technologies.
It is designed to simulate experiments conducted on MPD
and to analyze the resulting data. According to the MPD
documentation, collected data can be huge. Fast data
processing is necessary to cope with extreme data sets.
Thus it is a task of crucial importance that algorithms
work well in parallel and distributed environments [2-6]

In this paper, we look into how Graphic Processing
Units (GPUs) and multicore CPUs may be applied in
MPDRoot project optimization.

PERFORMANCE ANALYSIS OF
MPDROOT FRAMEWORK TESTS

The following methods were used to analyze MPDRoot

framework:

e Doxygen utility was used to generate classes and
functions dependency graphs. It was also used to
code navigation.

e ValgrindCallgrind tool was used to profile the
package. By using this we got callgraphs for
MPDRoot tests.

We selected some algorithms that can be ported on

coprocessor architectures and seems to be optimizable.

PROPOSED OPTIMIZATIONS

The following algorithms were considered:

e Fast Fourier Transform;

e Random number generation;

e Kalman Filter.

Figure 1 shows calls of the Rndm() function in the
ROOT framework. It is called over 32 million times in the
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runMC test. The function employs MT (Mersenne
Twister) algorithm described in [7].

Random Number Generation
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Figure 1: Profiling data - Random number generation.

There is a modified version of this algorithm — SFMT
(SIMD-oriented Fast Mersenne Twister) [8], which is
twice as fast owing to the SIMD (Single Instruction
Multiple Data) principle. It should be noted that the
version of MT described in that paper can only be
executed on a CPU with a vector processing unit (VPU).

CuRAND library may be used as an alternative to
ROOT-based MT. It makes it possible to generate random
numbers on GPGPU (general-purpose computing for
graphics processing units) using CUDA architecture. The
library provides a wide range of generators including MT
and MTGP (Mersenne Twister for Graphic Processors)
[9].

The use of the cuRAND library to generate random
numbers in the GEANT4 framework was proposed at the
Annual Science Meeting in 2013 [10]. This approach can
either be integrated into the MPD Root project directly
with the cuRAND library or indirectly by using
GEANT4.

Kalman Filter

MPD Root reconstructs the particles’ tracks using
Kalman filter. This algorithm is sequential and uses
matrixes.
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Figure 2: Profiling data - Kalman Filter: MnvertLocal function.

P — ] Figure 2 shows the call graph of

l MpdKalmanFilter::MnvertLocal() function, which

implements the Kalman filter algorithm. It utilizes nested

Loop | loops to invert matrixes. Figure 3 shows a schematic

representation of MnvertLocal function algorithm. Each

Nested loop | loop executes similar instructions independent of the

Scale matrix

1 values obtained during the previous iterations. They can,

therefore, be distributed to multiple cores of the CPU and
vectorized, or transferred to the GPGPU.

An alternative way to expedite Kalman filter track

reconstruction algorithm is described in [11]. In the paper,

L40

Loop

the authors proposed using SIMD instructions to optimize

the Kalman filter in the CBM@FAIR (Compressed

L50

L Y

X Baryonic Metter) experiment. They tested the algorithm
Condition before and after optimization and saw a major

Main Loop

improvement: the authors managed to increase the

I algorithm execution speed by a factor of 120.

»f

L5{

Loop | Fast Fourier Transform

FFTW library is used in the digitizing algorithm of the

Leb
v

Nested loop | TPC detector in TVirtualFFT «class, a Fourier

transformation shell in the ROOT framework. It provides

interfaces to work with OpenMP and MPI technologies.

‘L However, it does not support graphic co-processors.

Nested loop | There are multi-core-oriented libraries, such as cuFFT

Unscale
matrix

and cIFFT, which implement algorithms included into

FFTW.
l W.

[

End ) However, the use of multiple cores does not necessarily

influence the execution time of code segments. In some

Figure 3: MnvertLocal function scheme. cases, it can even increase their total processing time. For
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instance, according to the available tests, Fourier
transform algorithm represents a minor part of MPDRoot
project compared to the other package components (less
than 0.01%). This allows to conclude that running these
code segments on multiple cores will not reduce the test
processing time.

CONCLUSION

In this paper, we consider some of the possible
optimizations for MPDRoot project with coprocessor
technologies. We proposed some recommendations based
on both external libraries and algorithms based on
MPDRoot codes.
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