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Abstract 
We analyzed the ways to optimize MPDRoot 

algorithms using existing solutions from external 

libraries. We also examined the libraries designed to work 

with graphics accelerators and multi-core CPUs, such as 

cuRAND, cuFFT and OpenCL FFT.  

The paper describes the ways to expedite a portion of 

Kalman filter by transferring it to GPUs or multi-core 

CPUs using the implementation included into the  

MPDRoot package. 

INTRODUCTION 

MPD (Multi Purpose Detector) is a part of NICA 

(Nuclotron-based Ion Collider fAcility) [1]. MPDRoot is 

a framework based on ROOT and FairRoot technologies. 

It is designed to simulate experiments conducted on MPD 

and to analyze the resulting data. According to the MPD 

documentation, collected data can be huge. Fast data 

processing is necessary to cope with extreme data sets. 

Thus it is a task of crucial importance that algorithms 

work well in parallel and distributed environments [2-6] 

In this paper, we look into how Graphic Processing 

Units (GPUs) and multicore CPUs may be applied in 

MPDRoot project optimization. 

PERFORMANCE ANALYSIS OF 

MPDROOT FRAMEWORK TESTS 

The following methods were used to analyze MPDRoot 

framework: • Doxygen utility was used to generate classes and 

functions dependency graphs. It was also used to 

code navigation. • ValgrindCallgrind tool was used to profile the 

package. By using this we got callgraphs for 

MPDRoot tests. 

We selected some algorithms that can be ported on 

coprocessor architectures and seems to be optimizable.  

PROPOSED OPTIMIZATIONS 

The following algorithms were considered: • Fast Fourier Transform; • Random number generation; • Kalman Filter. 

Figure 1 shows calls of the Rndm() function in the 

ROOT framework. It is called over 32 million times in the 

runMC test. The function employs MT (Mersenne 

Twister) algorithm described in [7]. 

There is a modified version of this algorithm — SFMT 

(SIMD-oriented Fast Mersenne Twister) [8], which is 

twice as fast owing to the SIMD (Single Instruction 

Multiple Data) principle. It should be noted that the 

version of MT described in that paper can only be 

executed on a CPU with a vector processing unit (VPU).  

СuRAND library may be used as an alternative to 

ROOT-based MT. It makes it possible to generate random 

numbers on GPGPU (general-purpose computing for 

graphics processing units) using CUDA architecture. The 

library provides a wide range of generators including MT 

and MTGP (Mersenne Twister for Graphic Processors) 

[9]. 

The use of the сuRAND library to generate random 

numbers in the GEANT4 framework was proposed at the 

Annual Science Meeting in 2013 [10]. This approach can 

either be integrated into the MPD Root project directly 

with the cuRAND library or indirectly by using 

GEANT4. 

Kalman Filter 

MPD Root reconstructs the particles’ tracks using 

Kalman filter. This algorithm is sequential and uses 

matrixes.

Figure 1: Profiling data - Random number generation. 
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Figure 2: Profiling data - Kalman Filter: MnvertLocal function. 

 

Figure 2 shows the call graph of 

MpdKalmanFilter::MnvertLocal() function, which 

implements the Kalman filter algorithm. It utilizes nested 

loops to invert matrixes. Figure 3 shows a schematic 

representation of  MnvertLocal function algorithm.  Each 

loop executes similar instructions independent of the 

values obtained during the previous iterations. They can, 

therefore, be distributed to multiple cores of the CPU and 

vectorized, or transferred to the GPGPU. 

 

An alternative way to expedite Kalman filter track 

reconstruction algorithm is described in [11]. In the paper, 

the authors proposed using SIMD instructions to optimize 

the Kalman filter in the CBM@FAIR (Compressed 

Baryonic Metter) experiment. They tested the algorithm 

before and after optimization and saw a major 

improvement: the authors managed to increase the 

algorithm execution speed by a factor of 120. 

Fast Fourier Transform 

FFTW library is used in the digitizing algorithm of the 

TPC detector in TVirtualFFT class, a Fourier 

transformation shell in the ROOT framework. It provides 

interfaces to work with OpenMP and MPI technologies. 

However, it does not support graphic co-processors. 

There are multi-core-oriented libraries, such as cuFFT 

and clFFT, which implement algorithms included into 

FFTW. 

However, the use of multiple cores does not necessarily 

influence the execution time of code segments. In some 

cases, it can even increase their total processing time. For 

 

Figure 3: MnvertLocal function scheme. 
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instance, according to the available tests, Fourier 

transform algorithm represents a minor part of MPDRoot 

project compared to the other package components (less 

than 0.01%). This allows to conclude that running these 

code segments on multiple cores will not reduce the test 

processing time. 

CONCLUSION 

In this paper, we consider some of the possible 

optimizations for MPDRoot project with coprocessor 

technologies. We proposed some recommendations based 

on both external libraries and algorithms based on 

MPDRoot codes. 
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