WEPSB025

Proceedings of RuPAC2016, St. Petersburg, Russia

APPLICATION OF GPGPUs AND MULTICORE CPUs IN OPTIMIZATION
OF SOME OF THE MPDROOT CODES*

A. Fatkina#, O. Iakushkin, N. Tikhonov, St. Petersburg State University, St. Petersburg, Russia

Abstract
We analyzed the ways to optimize MPDRoot
algorithms using existing solutions from external

libraries. We also examined the libraries designed to work
with graphics accelerators and multi-core CPUs, such as
cuRAND, cuFFT and OpenCL FFT.

The paper describes the ways to expedite a portion of
Kalman filter by transferring it to GPUs or multi-core
CPUs using the implementation included into the
MPDRoot package.

INTRODUCTION

MPD (Multi Purpose Detector) is a part of NICA
(Nuclotron-based Ion Collider fAcility) [1]. MPDRoot is
a framework based on ROOT and FairRoot technologies.
It is designed to simulate experiments conducted on MPD
and to analyze the resulting data. According to the MPD
documentation, collected data can be huge. Fast data
processing is necessary to cope with extreme data sets.
Thus it is a task of crucial importance that algorithms
work well in parallel and distributed environments [2-6]

In this paper, we look into how Graphic Processing
Units (GPUs) and multicore CPUs may be applied in
MPDRoot project optimization.

PERFORMANCE ANALYSIS OF
MPDROOT FRAMEWORK TESTS

The following methods were used to analyze MPDRoot

framework:

e Doxygen utility was used to generate classes and
functions dependency graphs. It was also used to
code navigation.

e ValgrindCallgrind tool was used to profile the
package. By using this we got callgraphs for
MPDRoot tests.

We selected some algorithms that can be ported on

coprocessor architectures and seems to be optimizable.

PROPOSED OPTIMIZATIONS

The following algorithms were considered:

e Fast Fourier Transform;

e Random number generation;

e Kalman Filter.

Figure 1 shows calls of the Rndm() function in the
ROOT framework. It is called over 32 million times in the

* supported by SPbU (Saint Petersburg State University) grants
9.37.157.2014, 0.37.155.2014 and Russian Foundation for Basic
Research grant (project no. 16-07-01113 and no. 16-07-01111).
st035020 @student.spbu.ru

ISBN 978-3-95450-181-6
416

runMC test. The function employs MT (Mersenne
Twister) algorithm described in [7].

Random Number Generation

gdtrack_
940 101 865

13862 635 (22277 470
(1 177x) | (57 315x)

elec
816063219

(5283x)

288 328 644 15633 117
(18 135x) (450x)

g3thadr.
375 575 610

g3tmuon,

33310 462

jumpt0_2
16032 941

315138342 |152 693 537
(125 668x) [/ (54 285x)

23mults_
486 637 960

371552453
(146 224x)

16032941
(1 306x)

(168 236x)

guhadr

g3fluct_ ladr_
16032 941

754 753 797

[754 753 797
(260 599x)

115085 507
(54 435x)

16032 941
(1 308x)

e3landz_ streverool_
754 753797 29063 400

253 017 666 (39932617
(285 390x) | (116 547x)

29 063 400
(11 384x)

g3molie_ gheish_
115 085 507 16 032 941
31619 836
(321 168x)

115 085 507
(607 003x)

16 032 941

3poiss_
292 950 283 (213 062x)

292 950 283
(2 834 755x)

29 063 400
(139 055x)

= gmdm_
1370510 643

1370 510 643
(32913 957x)

TRandom3::Rndm(int)

1370 521 776
Figure 1: Profiling data - Random number generation.

There is a modified version of this algorithm — SFMT
(SIMD-oriented Fast Mersenne Twister) [8], which is
twice as fast owing to the SIMD (Single Instruction
Multiple Data) principle. It should be noted that the
version of MT described in that paper can only be
executed on a CPU with a vector processing unit (VPU).

CuRAND library may be used as an alternative to
ROOT-based MT. It makes it possible to generate random
numbers on GPGPU (general-purpose computing for
graphics processing units) using CUDA architecture. The
library provides a wide range of generators including MT
and MTGP (Mersenne Twister for Graphic Processors)
[9].

The use of the cuRAND library to generate random
numbers in the GEANT4 framework was proposed at the
Annual Science Meeting in 2013 [10]. This approach can
either be integrated into the MPD Root project directly
with the cuRAND library or indirectly by using
GEANT4.

Kalman Filter

MPD Root reconstructs the particles’ tracks using
Kalman filter. This algorithm is sequential and uses
matrixes.

Modern trends in accelerators

Proceedings of RuPAC2016, St. Petersburg, Russia WEPSB025

MpdTpcKalmanFilter::
DoTracking(...)
295373 375

64413281
(lix

[MpdTpcKalmanFilter::
[z | GoOutward(...) GoOut()
84 870 469 115531 828

I
14769 040 10 101 428 115 101 066 |
(15%) \‘ (15%) %)
L]

MpdTpcKalmanFilter::

MpdTpcKalmanFilter:

MpdTpcKalmanFilter:: | | MpdTpcKalmanFilter:: MpdTpcKalmanFilter:: | | MpdKfPrimaryVertexFinder:: | | MpdKfPrimaryVertexFinder::

GetTrackSeeds(...) RunKalmanFilter(...) BackTrace(...) e GoToBeamLine() Chi2Vertex() FindVertex()
1406 121 275729 134 155202 494 11877736 918 778 2757991
T
G A frotey : e N\ fims T i, ,/’{ﬁ/” o
Y 4 \ i] vy
MpdTpcKalmanTrack:: MpdKalmanFilter:: ‘ —/, MpdKalmanFilter:: 1+~ MpdKalmanTrack:: "
MpdTpcKalmanTrack(...) FilterHit(...) { PropagateToHit(...) ReSetWeight()
1406121 134 534 076 106 025 163 2542626

MpdTpcKalmanTrack:

EvalParams(_...)
1406 121

1406 121
(148x)

MpdTpcKalmanTrack::
EvalCovar(...)

1406 121

| MpdTpcKalmanFilter:: MpdKalmanFilter::
Sy] e StoreTracks() | PropagateWeight(...) feine
640 368 ‘ | 106 025 163
LA ‘)I /I‘
MpdKalmanFilter:: /
106025 163

1406 121
(181x)
~—

134 534 076
(@318x)

58 850 662

38 201 601 iwnﬁu 106 005 163
(7 387x) (634

(8040 | (636

FilterHitR(...)
134 534 076

(13 308x)

MpdKalmanTrack::
Weight2Cov() |
208 899 678

134534 076
(17 3581

208 399 678
1269508}

T—— "~ |MpdKalmanFilter:
MnvertLocal(...)
448 963 385

Figure 2: Profiling data - Kalman Filter: MnvertLocal function.

P —] Figure 2 shows the call graph of

l MpdKalmanFilter::MnvertLocal() function, which

implements the Kalman filter algorithm. It utilizes nested

Loop | loops to invert matrixes. Figure 3 shows a schematic

representation of MnvertLocal function algorithm. Each

Nested loop | loop executes similar instructions independent of the

Scale matrix

1 values obtained during the previous iterations. They can,

therefore, be distributed to multiple cores of the CPU and
vectorized, or transferred to the GPGPU.

An alternative way to expedite Kalman filter track

reconstruction algorithm is described in [11]. In the paper,

L40

Loop

the authors proposed using SIMD instructions to optimize

the Kalman filter in the CBM@FAIR (Compressed

L50

L Y

X Baryonic Metter) experiment. They tested the algorithm
Condition before and after optimization and saw a major

Main Loop

improvement: the authors managed to increase the

I algorithm execution speed by a factor of 120.

»f

L5{

Loop | Fast Fourier Transform

FFTW library is used in the digitizing algorithm of the

Leb
v

Nested loop | TPC detector in TVirtualFFT «class, a Fourier

transformation shell in the ROOT framework. It provides

interfaces to work with OpenMP and MPI technologies.

‘L However, it does not support graphic co-processors.

Nested loop | There are multi-core-oriented libraries, such as cuFFT

Unscale
matrix

and cIFFT, which implement algorithms included into

FFTW.
l W.

[

End) However, the use of multiple cores does not necessarily

influence the execution time of code segments. In some

Figure 3: MnvertLocal function scheme. cases, it can even increase their total processing time. For

ISBN 978-3-95450-181-6

Modern trends in accelerators 417

WEPSB025

instance, according to the available tests, Fourier
transform algorithm represents a minor part of MPDRoot
project compared to the other package components (less
than 0.01%). This allows to conclude that running these
code segments on multiple cores will not reduce the test
processing time.

CONCLUSION

In this paper, we consider some of the possible
optimizations for MPDRoot project with coprocessor
technologies. We proposed some recommendations based
on both external libraries and algorithms based on
MPDRoot codes.

ACKNOWLEDGMENT

This research was partially supported by SPbU (Saint
Petersburg State University) grants 9.37.157.2014,
0.37.155.2014 and Russian Foundation for Basic
Research grant (project no. 16-07-01113 and no. 16-07-
01111).

REFERENCES

[1] MPD Collaboration, MPD Concept
http://mpd.jinr.ru

[2] A.Zinchenko, Y.Murin, V.Kondrat’ev, N.Prokof’ev,
“Modeling of the internal tracking system of the
NICA/MPD detector.” Physics of Particles and Nuclei
Letters, 13(4), pp.483-491 (2016).

[3] O. Iakushkin, "Intellectual scaling in a distributed cloud
application architecture: A message classification
algorithm", Stability and Control Processes in Memory of

Design Repot;

ISBN 978-3-95450-181-6
418

Proceedings of RuPAC2016, St. Petersburg, Russia

VI Zubov (SCP), 2015 International Conference, IEEE, p.
634-637. (2015).

[4] S. Abrahamyan, S. Balyan, A. Muradov, V. Korkhov, A.
Moskvicheva, and O. Iakushkin. "Development of M-
Health Software for People with Disabilities." In
International Conference on Computational Science and Its
Applications, Springer International Publishing, p. 468-
479(2016).

[5] O. Iakushkin, O. Sedova, G. Valery, “Application Control
and Horizontal Scaling in Modern Cloud Middleware.”,
Transactions on Computational Science XXVII, Springer
Berlin Heidelberg, p. 81-96.(2016).

[6] Y. Shichkina, A. Degtyarev, D. Gushchanskiy, and O.
Takushkin. "Application of Optimization of Parallel
Algorithms to Queries in Relational Databases.",
International Conference on Computational Science and Its
Applications, Springer International Publishing, p. 366-378
(2016).

[71 M. Matsumoto, N. Takuji, "Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random
number generator”, ACM Transactions on Modeling and
Computer Simulation, Vol. 8 No. 1 p. 3-30 (1998).

[8] M. Saito, M. Matsumoto, "SIMD-oriented Fast Mersenne
Twister: a 128-bit Pseudorandom Number Generator",
Monte Carlo and Quasi-Monte Carlo Methods 2006, p. 607
— 622 (2008).

[9] M. Saito, M. Matsumoto, "Variants of Mersenne Twister
Suitable for Graphic Processors" ACM Transactions on
Mathematical Software, Vol. 39 No. 2 (2013).

[10] Soon Yung Jun, J. Apostolakis, "GPUs in GEANT4",
Annual Concurrency Meeting, February 2013.

[11] S. Gorbunov, U.Kebschull, 1. Kisel, W. F. J. Miiller, V.
Lindenstruth, "Fast SIMDized Kalman filter based track
fit", Computer Physics Communications, Vol. 178, No. 5,
p. 374-383 (2008).

Modern trends in accelerators

