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Abstract

The present report is concerned with the problem of par-

ticle phase space distributions for a charged particle beam.

A new approach is presented. It provides the possibility to

specify various coordinates in the phase space. The main

attention has been focused on the case where motion inte-

grals are taken as phase coordinates. Using such coordi-

nates, one can obtain a lot of self-consistent distributions.

Some distributions for a breathing beam are considered as

examples: generalized Brillouin flow, generalized KV dis-

tribution, and others. Besides, this approach allows simple

graphical representation of various self-consistent distribu-

tions.

PHASE DENSITY

Main feature of the presented approach is covariant de-

scription of the particle distribution density in the phase

space. The phase space particle distribution is described by

a tensor density instead of the scalar distribution function.

It allows specifying various coordinates in the phase space.

This concept was previously formulated in the works [1, 2].

Let us consider a charged particle beam as a continu-

ous media that occupies an open set in the phase space
✁✄✂

Such distribution are nondegenrate, and this cases can be

regarded as most general. According to this model, particle

number in an open subregion ☎✝✆✞☎✠✟ ✁ ✆ is a real number.

Call the differential form ✡☞☛✍✌✎✆✑✏✓✒ of degree ✔✖✕✘✗✚✙ ✛ ✁
such that integration of the form over each open set ☎ gives

particle number in ☎ the particle distribution density in the

phase space, or the phase density:✜✢ ✡✣✕✥✤ ✢ ✂
Here ✏ and ✌ denote position in the phase space and the time

correspondingly. The boundaries of ☎ and the form ✡ are

assumed sufficiently smooth for integration being possible.

Such tensor density has the following physical sense. If we

take a cell in the phase space defined by ✔ displacement

vector, the density as a polylinear form acting on these dis-

placement vectors gives us a number of particles in this

cell.

Consider another case when particle are distributed on

an oriented surface ✦ in the phase space that can move,✗✚✙ ✛✥✦✧✕✧★✩✆✫✪✭✬✮★✯✬✄✔ ✂ Call the differential form ✡☞☛✍✌✎✆✑✏✓✒
of degree ★ defined on the surface ✦ such that for any open✰
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set ☎✝✆✱☎✠✟ ✁ ✆ ✜✢✳✲✚✴ ✡✣✕✥✤ ✢
the particle distribution density for this case. This form

depends on orientation of the surface. The orientation is

defined by an ordered set of ✔✶✵✷★ vectors. For exam-

ple, orientation of a two-dimensional surface in the three

dimensional space is defined by a vector, and in the four-

dimensional and orientation of A change of the orientation

can result in change of sign of the form components [3].

Assume that form ✡ and the surface ✦ are also sufficiently

smooth for integration being possible.

At last, consider the case of a collection of dicrete parti-

cles. Define the scalar function✸✺✹✼✻ ☛✽✏✓✒✾✕❀✿❂❁ ✆ ✏❃✕✥✏✱❄✽✆✪❅✆ ✏❇❆✕✥✏✱❄ ✂ (1)

If ✏✱❄ depends on ✌✎✆ then this function is also function of ✌ ✂
All functions which values are nonzero only in finite set of

points can be represented as linear combination of the func-

tions of form (1). Restrict ourselves only to combinations

with all coefficients equal to ❁ :✡☞☛✍✌✎✆✑✏✓✒✾✕❉❈❊ ❋ ●✳❍ ✸✺✹✼■ ❏ ❑ ☛✽✏✓✒✎✆ ✏✱▲ ❋ ▼ ❆✕✥✏✱▲ ◆ ▼ ✆❖✙ P❉◗❘❆✕❚❙ ✂ (2)

In this class of functions, define an operation of taking sum

of function values in all points ✏✓▲ ❋ ▼ ✆ where the function

value is nonzero:❊✹❱❯ ✢ ✡☞☛✍✌✎✆✑✏✓✒☞❲ ❊❋❨❳ ✹✼■ ❏ ❑❩❯ ✢ ✡☞☛✍✌✎✆✑✏✱▲ ❋ ▼ ✒ ✂ (3)

Operation defined by equation (3) is analogous to integra-

tion of the form of higher degree over ☎ ✂ A scalar func-

tion can be regarded as the differential form of degree ✪ ✂
Therefore, equation (3) set a rule of integration of a form

of degree ✪ over open set ☎ ✂ As previously, call function of

form (2) the phase density for system of pointlike particles

if ❊✹❱❯ ✢ ✡☞☛✍✌✎✆✑✏✓✒✾✕✧✤ ✢ ✂
It is easy to understand that the phase density is given by

equality (2), where ✏✓▲ ❋ ▼ are positions of the particles in the

phase space, ◗❬✕ ❁ ✆✑✤❭✆✺✤ is the total number of particles in

the ensemble.
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DISTRIBUTIONS FOR A CHARGED PARTICLE BEAM

Proceedings of RuPAC2016, St. Petersburg, Russia WEPSB020

Particle dynamics, new methods of acceleration and cooling

ISBN 978-3-95450-181-6

407 C
op

yr
ig

ht
©

20
17

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



At each instant of time ✌ , particle dynamics equations

define a vector field �❬☛✍✌✎✆✑✏✓✒✎✆ which depends on the force

acting on a particle.

Assume that for each ✌ ✏✂✁ ✁ there exists a unique in-

tegral line passing through point ✏ ✂ For example, if compo-

nents of �❬☛✍✌✎✆✑✏✓✒ in Cartesian coordinates are continuously

differentiable with respect to coordinates and the time, it

will be so. The time can be taken as a parameter for the

integral lines.

In all three cases, the Vlasov equation can be written in

the form ✡☞☛✍✌☎✄ ✸ ✌✎✆✝✆✟✞✡✠☞☛ ✏✓✒✾✕✌✆✟✞✡✠☞☛ ✡☞☛✍✌✎✆✑✏✓✒ ✂ (4)

Here ✆✟✞✡✠☞☛ denotes the operation of Lie dragging of a point

or a tensor along the vector field � by the parameter incre-

ment
✸ ✌ ✂

When moving particles always lie on the same surface,

that is each points of this surface belongs to the support of

this distribution, equation (4) can be rewritten with use of

the Lie derivative of the phase density along the vector field� ✆ which is denoted by ✍✎✞ ✡☞☛✍✌✎✆✑✏✓✒✎✆ as follows✏ ✡✒✑ ✏ ✌ ✕ ✵✓✍✔✞✓✡☞☛✍✌✎✆✑✏✓✒ ✂ (5)

SPACE OF INTEGRALS OF MOTION

Consider stationary azimuthally symmetric beam in lon-

gitudinal magnetic field in which all particles have the same

longitudinal velocity ✕✗✖ [4-16]. Let radius of the beam

cross-section ✘ and longituninal component of the mag-

netic field ✙ ✖ ☛✛✚ ✒ slow change along beam axis:
✏ ✙ ✖ ✑✢✜✣✚✥✤✙ ✖ ✑✢✘ ✂ Assume also that the spatial density is uniform

within each cross-section: ✦❃✕✧✦✢★✫☛✛✚ ✒✎✆✪✩ ✬✫✘ ✂
Under the assumptions the vector potential correspond-

ing to the external magnetic field can be taken as✬ ★ ✕ ✬✎✭ ✕ ✬ ✖ ✕✧✪❅✆ ✬✯✮ ✕ ✵✔✰✱✙ ✖ ☛✛✚ ✒✲✩✢✳✢✑✵✴✚✆
and the vector potential of the self field of the beam as✬ ✕ ☛✼✵✯✶✝☛✷✩✱✆✝✚ ✒✝✑✢✰✱✆✑✪❅✆✑✪❅✆✹✸✟✶✝☛✷✩✱✆✝✚ ✒✝✑✢✰ ✒ ✂
Here ✩✱✆✟✺ ✆✻✚ denotes the cylindrical spatial coordinates,✸✠✕✼✕ ✖ ✑✢✰ is reduced longitudinal velocity, ✶✝☛✷✩✱✆✝✚ ✒ – po-

tential of the self electric field.

Then equation of the azimuthal motion can be written in

the form [3] ✜ ★ ✮✜✾✽ ✕❀✿✰ ✏❁✬ ◆✏ ✺❃❂ ◆ ✆ (6)

and its integral in the form (6)✁ ✕✌✩✢✳✫☛✛✺ ❄ ✄❅❄✒★✞✒ ✂ (7)

Here ★✩✆ ❂ denote four-dimensional momentum and velocity

of the particle, ✽ -relativistic interval, ❄✟★ ✕ ✿ ✙ ✖ ☛✛✚ ✒✝✑✵✴✱✔✂✰✱✆✁ ✕ ★ ✮ ✑✞✔✂✰✱✆ ✿ and ✔ charge and mass of the particle,

stroke denotes differentiation with respect to ✽ ✆ summation

over ❙ is meant according the Einstein rule.

Equation of the radial motion has the form✜ ★ ✭✜✾✽ ✕ ✵❘✔✂✰❆✩✢✺ ❄ ✳❇✄ ✿❈ ✰ ✏ ✶✏ ✩ ✵ ✿ ✙ ✖ ✩✢✺ ❄ ✂ (8)

Substituting ✺❬❄ ✕ ✵❉❄✒★❇✄ ✁ ✑✪✩ ✳ ✆❱★ ✭ ✕✧✔✂✰✡✜❊✩❊✑✢✜✾✽ ✆ and tak-

ing into account uniformity of the spatial distribution inside

beam cross-section, rewrite the equation (8) in the form✜ ✳ ✩✜✾✽ ✳ ✕ ✵❉❄❋✳★ ✩✎✄ ●✘✝☛✛✚ ✒ ✳ ✩✎✄ ✁ ✳✩✢❍ ✕ ✵❉❄❋✳✱✩✔✄ ✁ ✳✩✢❍ ✂ (9)

Here

❄❋✳ ✕■❄❋✳★ ✵ ●✘✝☛✛✚ ✒ ✳ ✆ ● ✕ ❏❏ ★▲❑ ❁✸ ❈ ✆ ❏ ★ ✕ ✴✢▼❁◆✢★ ✔✂✰ ❍✿ ✆❏
is the beam current, ❈ ✕ ☛ ❁ ✵❖✸ ✳ ✒◗P

❍ ❘ ✳ is reduced energy,◆✢★ is electric constant.

Assume that the beam envelope ✘✝☛✛✚ ✒ is determined only

by particles with
✁ ✕ ✪ ✂ Then the equation (9) of the ra-

dial motion can be represented in the form:❙ ❄ ✕ ✬ ❙ ✆ (10)

where ❙ ✕ ❚ ✩✩✱❄❱❯ ✆ ✬ ✕ ❚ ✪ ❁✵❉❄ ✳ ✪✟❯ ✂
Assume that in initial cross-section ✚❇✕❲✚✪★ particle fill the

ellipse ❙❅❳★ ✙✎★ ❙ ★❩❨ ❁ ✆✒✙✎★ ✕ ❚✓❬ P ✳★ ✪✪ ✰ P ✳★ ❯ ✂
Then at ✚❪❭❲✚❫★ ✆ they will fill ellipses

❙ ❳ ✙ ❙ ❨ ❁ ✆ where✙✠✕✌✆ ❳ P ❍ ✙✎★✪✆❴P ❍ ✆ and ✆ — matrizant of the system (10).

It is easy to see that✘ ✳ ✕ ☛✛✙ P ❍ ✒ ❍✑❍ ✕ ❬ P ✳★ ✆ P ✳❍✑❍ ✄❵✰ P ✳★ ✆ ✳❍ ✳ ✂
Matrix elements ✆ ❍✑❍ and ✆ ❍ ✳ satisfy to the equations✆ ❄ ❄❍✑❍ ✕ ✵❉❄ ✳ ✆ ❍✑❍ ✆✟✆ ❄ ❄❍ ✳ ✕ ✵❉❄ ✳ ✆ ❍ ✳ ✂

Integrating them, we get the envelope equation in the form

✘ ❄ ❄ ✕ ✵❉❄❋✳✱✘■✄ ❬ ✳★ ✰ ✳★✘❛❍ ✂ (11)

The system of equation (9), (11) can be reduced to a par-

ticular case of the generalized Ermakov system considered

in the work [17]. It can be shown that❜ ✕ ☛✛✘✯✩ ❄ ✵❝✩✢✘ ❄ ✒☞✳❇✄ ✁ ✳ ✘ ✳✩ ✳ ✄ ❬ ✳★ ✰ ✳★ ✩ ✳✘ ✳ ✕
☛ ✜✫✏✜❊❞ ✒☞✳❇✄ ✁ ✳✏ ✳ ✄ ❬ ✳★ ✰✱✳★ ✏✢✳ (12)

is integral of the motion. Here ✏✷✕❡✩❊✑✢✘ ✆❢✜❊❞ ✕❣✜✾✽✢✑✢✘ ✳ ✂
Integral (12) was introduced for the first time in the work

[5]. When
✁ ✕ ✪❅✆✢❄✥✕❤❄ ☛✐✽✞✒ integral (12) coincides with
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well known Courant-Snyder invariant [18], which is inte-

gral for the Ermakov system [19] and for its generalization

[17]when
✁ ✕✥✪❅✆ ● ❆✕✥✪ ✂

Call the space with coordinates
✁

and
❜

the space of in-

tegrals of motion. It is easy to see that the set of admissible

values of
✁

and
❜

in this space is determined by inequali-

ties ✴ ❬ ★❫✰❆★✁� ✁ � ✬ ❜ ❨ ✁ ✳ ✄ ❬ ✳★ ✰ ✳★ ✂ (13)

Denote this set by ✂✄
❍ ✂

Consider a particle distribution of some thin slice mov-

ing along beam axis. The phase space is four-dimensional,

and integrals
✁ ✆ ❜ ✆ azimuthal angle ✺ and particle phase on

the trajectory ☎ can be taken as coordinates in it. Assume

that particle uniformly distributed on ☎ and ✺ ✂ Under this

condition any distribution in the phase space is uniquely

defined by distribution in the space of integrals of motion.

There exists a condition which should be satisfied for

distribution specified in this way. Such distribution should

be spatially uniform in the beam cross-section, as the inte-

gral
❜

was obtained under this assumption.

Therefore, we should substitute a density specified in the

space of integrals of motion in some integral equation.

There is a more simple way to construct new self-

consistent distribution. If we know various distributions

uniform inside beam cross-section, we can take their linear

combination, and it will be also uniform. If a class of such

distributions depends on a parameter, integrating over this

parameter also gives spatially uniform distribution.

✆

✝✞
✟ ✟

✠

✞☛✡

✝ ✡☞

Figure 1: The set of admissible values ✂✄
❍

in the space of

integrals of motion for a uniformly charged beam (thick

lines).

SELF-CONSISTENT DISTRIBUTIONS

At first, consider a case when particles are distributed on

the two-dimensional surface
✁ ✕ ✪❅✆ ❜ ✕ ✪ ✂ In this case

the Vlasov equation (5) takes the form✏ ✡✍✌ ✮✏ ✌ ✄✏✎☎
✏ ✡✍✌ ✮✏ ☎ ✄ ✎✺ ✏ ✡✍✌ ✮✏ ✺ ✕✥✪ ✂

The first term in the left hand side is zero as the distribution

is stationary. According to the previous assumption, the

second and the third terms are equal to zero. Therefore

such distribution is satisfied to the Vlasov equation.

Passing to the Cartesian spatial coordinates ✑✩✆✓✒ ✆ it is

easy to find that spatial distribution is uniform inside the

beam cross-section. Such distribution is a generalization of

the well known Brillouin flow [20].

Consider also a distribution when all particles are uni-

formly distributed on the segment ✦✍✔ ✆ which is tangent to

upper boundary of the set ✂✄
❍
✕✦✓✔ ✕ ❜ ✕✗✖ ✁ ✄ ❜ ★ ✆ ❜ ★ ☛✘✖❅✒✾✕ ❬ ✳★ ✰✱✳★ ✵✙✖✗✳✪✑✛✚ ✆

� ✖✓� ✬ ✴ ❬ ★❫✰❆★ ✆✩☛ ✁ ✆ ❜ ✒❩✁✜✂✄
❍

(segment
✬ ❄ ✙ ❄ on Fig.1). De-

scribe the particle density in the space of the integrals of

motion by the differential form of the first degree �✵★❫✜ ✁ ✆�✪★✣✢ ✪ ✂ In the initial four-dimensional phase space such

density is described by the form of degree ✤ defined on the

segment ✦✓✔ ✂
As for each

✁ ✆ ❜ particles are uniformely distributed on☎ and ✺ ✆ ✡ ✮ ✌✦✥ ✕ �✪★✢✑✛✚❊▼✓✧ ☛ ✁ ✆ ❜ ✒✎✆
where ✧ ☛ ✁ ✆ ❜ ✒ is change of the phase ☎ along a half of

trajectory:

✧ ☛ ✁ ✆ ❜ ✒✾✕ ✹✩★✫✪✭✬ ■ ✮✰✯ ✱ ❑✜✹✩★✫✲ ✳✼■ ✮✰✯ ✱ ❑ ☛ ❜ ✵ ✁ ✳✏ ✳ ✵ ❬ ✳★ ✰✱✳★ ✏✢✳✺✒
❍ ❘ ✳ ✜✫✏❃✕ ▼✴ ❬ ★❫✰❆★ ✂

Passing to the Cartesian coordinates ✂✑✷✕✴✑✡✑✢✘ ✆ ✂✒ ✕✴✒ ✑✢✘ ✆
we get ✡✰✵✶ ✵✷ ✥ ✕ ✡ ✮ ✌✦✥✏✸� ✎✏✸� ✂

For spatial density we obtain

✦✸✵✶ ✵✷ ✥ ✕ ✥✺✹✜
✥✼✻
✡✰✵✶ ✵✷ ✥ ✜ ✁ ✕ ❬ ★❫✰❆★✪�✪★▼ ✕✌✰✾✽✞✡ ✽ ✌ ✂

Therefore, for such distributions the particles are uni-

formely distributed inside the beam cross-section.

When ✖❂✕✄✪ (segment
✬ ✙ on Fig.1), we have analogue

of the Kapchinsky-Vladimirsky distribution for nonuni-

form beam. It is easy to understand that taking a linear

combination of such distributions with various ✖ we also

get a solution of the Vlasov equation.

As it was mentioned before, various self-consistent dis-

tributions can be also found from the integral equation

This equation can be written if we express spatial density

through the density in the space of integral of motion and

equate it to the density for which integrals are gotten.
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