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Abstract 
Coherent instabilities of the bunched beam are one of 

the reasons that limit a total beam current in the storage 

rings. Although there are solutions of this problem, the 

estimation and reduction of the wake-fields influence on 

the longitudinal beam dynamics remain important things. 

In the article we return to the subject of coherent 

instabilities of the unevenly-filled bunches in the storage 

rings. 

INTRODUCTION 

The interaction of the bunched beam with its wake-

fields in the vacuum chamber of the storage ring causes 

the coherent single-bunch and coupled-bunch instabilities. 

The growth of the coherent instabilities contributes to an 

increase of the longitudinal and transverse emittances and 

the energy spread of the single bunch. Also it leads to the 

partial losses and to complete losses of the bunch 

particles in some cases. The result of this process is the 

limitation of the maximum synchrotron radiation 

brightness of a facility. 

Since most of the modern storage rings operate in a 

multi-bunch mode, a primary task is to cure the coupled-

bunch instabilities. To dump the coherent oscillations of a 

bunch sequence the feedback systems are used [1]. But 

it’s not a single way to solve the problem. To increase the 

instability threshold and the total beam current in the 

storage ring, it requires the reducing the wake-fields 

influence. In view of this fact the RF cavities with the 

HOM dumping or with a good HOM frequency control 

and stabilization, the smoothing of a vacuum chamber 

structure and the using the harmonic RF cavities for 

Landau damping have place at the accelerators [2]. 

The review of bunched beam coherent instabilities can 

be found in [3, 4, 5, 6, 7]. In most cases authors 

considered the interaction of the symmetrically disposed 

point charge bunches with wake-fields. Whereas the 

operation with the non-symmetrical beam and unevenly-

filled bunches allows to increase the instability threshold 

and the total beam current. The attempts to determine the 

wake-field contribution to the longitudinal dynamics and 

the bunch sequence have led to the development of the 

several calculation schemes [8, 9, 10]. But these are 

special cases of a symmetrically-filled ring, and in some 

of them estimation results not always agreed to the 

experiment data. 

The coherent frequencies of the non-symmetrical 

bunched beam were found following a basic approach 

that uses a notion of the beam spectrum and an impedance 

function to describe the beam-chamber interaction. This 

analytical solution allows to estimate the influence of 

each field mode on the coherent oscillations of bunches 

with known mode parameters (the resonant frequency, the 

shunt impedance, the quality factor), the given bunch 

sequence and the Gauss distribution of particles in the 

phase plane. 

COUPLED BUNCH INSTABILITIES 

The longitudinal dynamics of the bunched beam under 

the influence of the external RF fields and its own wake-

fields is presented in this article. 

The M electron bunches circulate in the accelerator 

with an angular revolution frequency   . Bunches fill the 

orbit in the arbitrary order. Maximum number of bunches 

corresponds with the separatrix number of the ring, which 

is equal to the ratio of the RF frequency to the revolution 

frequency. 

The appearance of the coherent oscillations adds to 

stationary distribution the components of the density 

perturbation. Then the electron distribution function can 

be written as: 

{ ሺ ̂    ሻ    ሺ ̂ሻ  ∑   ሺ ̂ሻ                ̂       ሶ    ̂             , (1) 

where   ሺ ̂ሻ – the stationary distribution function of 

particles in the bunch,   ሺ ̂ሻ – the amplitude of the 

density perturbation component for the m-mode of 

oscillations,     – the coherent angular frequency of the 

m-mode of oscillations, τ – the time deviation of the 

particle from the reference particle place,  ̂ и φ – the 

amplitude and phase of oscillations in polar coordinates,    – the incoherent synchrotron frequency taking into 

account the potential well distortion effect [11],    – the 

initial phase of oscillations. 

The longitudinal dynamics of electrons in the k-bunch 

is described by a synchrotron motion equation of the 

single particle and the Vlasov equation for the distribution 

function of particles in the bunch [3]. For small 

oscillations the linearized equations are:  ሷ                  ∑          ሺ       ሻ                  ሺ   ሻ                 ,  (2) 

ቀ          ቁ∑    ሺ ̂ሻ             ሺ ሷ      ሻ             ሺ ̂ሻ  ̂ ,   (3) 

where 

 ___________________________________________  

*The reported study was funded by RFBR according to the research 

project No. 16-32-00335 ɦоɥ_а. 

#sasmyga@mail.ru 

Proceedings of RuPAC2016, St. Petersburg, Russia WEPSB016

Particle dynamics, new methods of acceleration and cooling

ISBN 978-3-95450-181-6

395 C
op

yr
ig

ht
©

20
17

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



     ∫  ̂   ሺ ̂ሻ  ሺ    ̂ሻ  ̂   , 

p,m=0,±1,±2,±3…, i=0,1,2..h-1,         – the RF 

harmonic number,     – the incoherent synchrotron 

frequency,     ⁄  – the relativistic velocity factor,    – 

the revolution time period,        ⁄ , α – the 

momentum compaction factor, γ – the relativistic factor, 

E – the particle energy,         – the bunch current, N – 

the number of electrons in the bunch, e – the elementary 

charge, Z(ω) – the longitudinal impedance function,   ሺ    ̂ሻ – the first order Bessel function. 

The main cause of the rise of the longitudinal bunched 

beam instabilities is the long-range electromagnetic fields 

excited by bunches in the resonant structures of the 

vacuum chamber. As a rule these structures are the 

accelerating RF cavities that have them own resonant 

frequency spectrum, given by the cavity design. 

The impedance function Z(ω) of the structures can be 

represented as a sum of resonant impedances of the RLC 

circuits with the resonant frequency   , shunt impedance       and quality factor   . In addition, if the resonant 

structures of the ring separate from each other as far as 

the electromagnetic relation is not existed, that the 

impedances are additive. The impedance of the structure 

at the beam current harmonic with coherent frequency is:  ሺ       ሻ  ∑                  ሺ      ሻሺ      ሻ , (4) 

where                         √      ;        ;          , for small bunch current              , 

the sum over r is the sum over the impedance frequency 

spectrum. 

Rewrite the equation (3) for components of the 

distribution function with the view of the coherent mode 

coupling is absent: 

 ሺ       ሻ     ሺ ̂ሻ            ̂     ሺ ̂ሻ  ̂  ∑              ሺ       ሻ         ሺ   ሻ    ሺ    ̂ሻ.    (5) 

Multiply both parts of (5) by ቀ  ̂  ቁ  and integrate 

respect to  ̂:  ሺ       ሻ             ∑  ሺ       ሻ                ሺ   ሻ              ,  (6) 

where 

    =∫     ሺ ̂ሻ  ̂ ቀ  ̂  ቁ   ሺ    ̂ሻ  ̂   . 

    ∫  ̂   ሺ ̂ሻ (  ̂  )   ̂  
  

The first order Bessel function is 

  ሺ    ̂ሻ  ∑ ሺ  ሻ     ሺ     ሻ ቀ    ̂ ቁ         . 

The most typical particle distribution for electron 

bunched beams is a Gaussian distribution. So the 

stationary distribution of electrons in the k-bunch is 

   ሺ ̂ሻ            ̂      ,  (7) 

    – the RMS bunch length. The initial bunch length is 

set by the potential well distortion effect, the microwave 

instability, the Touschek effect, the quantum fluctuations 

and the radiation damping in the storage rings. The first 

free effects dominate at the low energies, and so the 

bunch length depends on the bunch current. The quantum 

fluctuations and the radiation damping determine the 

bunch length at the high energies. Therefore we can 

suppose the bunch length is independent of the current at 

the high energies. 

We have for the Gaussian distribution 

              ሺ   ሻ    (      )         , 

and  ሺ       ሻ              ∑ ሺ  ሻ          ሺ     ሻ                              ሺ       ሻ  ቀ      √ ቁ        (      )          ሺ   ሻ, 
     ∫  ̂   ሺ ̂ሻ ቀ  ̂  ቁ      ̂   . 

The substitution of the infinite upper limit in the 

integrals has place due to the density perturbation 

components are bounded in the phase space. 

Using the method presented by B. Zotter in [12], we 

can find the effective impedance of the resonant structure 

that surrounds the beam. The final equation for the 

coherent frequencies of coupled bunches having the 

Gaussian distribution of particles is: ሺ       ሻ               ∑ ሺ  ሻ          ሺ     ሻ                          ሺ         ሻ  ቀ            [       ]  ∑                [       ]ቁ,        (8) 

where 
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      ቀ(    ) ሺ   ሻ        ∑  ቀ    ቁ          (    ) ሺ   ሻ     ቁ          √  ቀ(    ) ሺ   ሻ        ∑  ቀ    ቁ  (    ) ሺ   ሻ             ቁ, 
      ቀ(    ) ሺ   ሻ        ∑  ቀ    ቁ          (    ) ሺ   ሻ     ቁ          √  ቀ(    ) ሺ   ሻ        ∑  ቀ    ቁ  (    ) ሺ   ሻ             ቁ, 
          (    )              ቀ (    )    (    ) ቁ, 
            (    )                                ቀ (    )    (    ) ቁ, 
                √ , 

 ሺ ሻ      ቀ    √ ∫        ቁ – a complex error 

function. 

The ratio 
        is unknown in the (8). Let us assume the 

amplitude of particle oscillations is small as compared 

with the wave-length of the electromagnetic wake-field 

(
    ̂   ) to define the ratio. That in (5)  

  ሺ    ̂ሻ    ሺ   ሻ  ቀ    ̂ ቁ . 

Multiplied both parts equation (5) by ቀ  ̂  ቁ  and 

integrated respect to  ̂, we get 

 ሺ       ሻ                     ∑   ሺ  ሻ      ሺ   ሻ              ሺ       ሻ         ሺ   ሻ, (9) 

where  

     ∫     ሺ ̂ሻ  ̂ ቀ  ̂  ቁ    ̂         ሺ   ሻ               . 

Put equation (9) in (5) and find the approximate 

solution for functions    ሺ ̂ሻ for 
    ̂   : 

   ሺ ̂ሻ    ̂      ሺ ̂ሻ  ̂  ቀ  ̂  ቁ         .  (10) 

Put (10) in the ratio 
       ,  we can rewrite equation (8) 

ሺ       ሻ               ∑ ሺ  ሻ     ሺ   ሻ                       ሺ         ሻ  ቀ          [       ]  ∑                     [       ]ቁ,      (11) 

The ratio 
       is unknown in the (11) also. Suppose here 

that each bunch has the same distribution function and the 

RMS bunch length is independent of the self-bunch 

current. Hence, the RMS bunch lengths are equal each 

other and the ratio 
       is equal 1 for bunches oscillating in 

the same potential well, formed by the external RF field 

and wake-fields. As a result, the coherent frequencies are ሺ       ሻ               ∑ ሺ  ሻ     ሺ   ሻ                    ሺ         ሻ  (    [       ]  ∑     [       ]   ) 
      (12) 

CONCLUSIONS 

The equation (12) is the approximate solution of the 

coherent frequencies. But it already allows to estimate the 

wake-fields influence and the coherent oscillations 

stability of the bunched beam. Also the solution for 

single-bunch instabilities can be found taking just term 

for i=k in the equation (12). 
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