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Abstract

The behavior of relativistic intense electron beam with

elliptical cross-section moving in a longitudinal magnetic

field is investigated with the help of self-consistent model.

The solutions for the beam envelopes are obtained in the

case of the beam current differed from Alfven limit and

the beam charge neutralized. The conditions of station-

ary beam propagation are determined, however it is dis-

covered that for the case of non-zero self-consistent mag-

netic field the stationary beam propagation is violated, the

partial emittance oscillations being observed. The found

time- dependence of the partial emittances and the beam

envelopes illustrates the effect of emittance transfer caused

by the coupled particle motion in magnetic field.

INTRODUCTION

In [1,2,3] studied the behavior of the electron beam in a

quadrupole system, the aim of this study was the possibil-

ity of compression - reducing the area of the cross-section

of the beam when changing quadrupole forces. If the [1]

to the transverse emittance were considered equal, in [2],

these values are considered to be different, but continuing

when the beam moves. In this paper we study the distribu-

tion of the electron beam decompensated with an elliptical

cross-section in the absence of external quadrupole system

and in the presence of a longitudinal magnetic field. The

presence of the longitudinal magnetic field greatly compli-

cates the situation - there are not two independent integrals

of motion. Emittance can be converted (pumped). It is not

a conserved quantity as the product of these values.

EQUATIONS

Consider a beam whose charge is compensated by the

secondary particles. Lateral movement can be separated

from the lengthwise when the current satisfies the follow-

ing condition:

J << JA, where JA = mc3γ0β0/e. The distribution

function can be written as: F = δ(βz − β0)f(�r⊥, z, �v⊥).
In this paraxial approximation the longitudinal velocity of

the particles can be considered constant and equal for all

particles. The stationary problem instead of the time you

can use a coordinate z. In accordance with the invariant that

defines the movement, should depend on x(z), y(z), x′ =
dx
dz
, y′ = dy

dz
, z. We derive the equations of motion of par-

ticles in the laboratory frame. Consider that in the sys-

tem connected to the main beam axes(x1, y1) have their

own self-compression force directed to the beam axis:

Fx1
= − 2ix1

Rx(Rx+Ry)
, Fy1

= − 2iy1

Ry(Rx+Ry)
. Here i =

J/JA beam current related to Alfven,, Rx(z), Ry(z) - the

value of the semi-axes of the elliptic beam cross section).

Calculating further, Fx = Fx1
cos θ − Fy1

sin θ, Fy =
Fx1

sin θ + Fy1
cos θ, which should be considered x1 =

x cos θ + y sin θ, y1 = −x sin θ + y cos θ, and θ(z) - an-

gle of rotation of the principal axes of the ellipse relative to

fixed axes, the equation can be obtained:

x′′ = ωHy′−α(z)x+β(z)y, y′′ = −ωHx′+β(z)x−γ(z)y,
(1)

where

α =
i

RxRy

(
1− Rx −Ry

Rx +Ry

cos 2θ
)

β =
−i

RxRy

Rx −Ry

Rx +Ry

sin 2θ

γ ==
i

RxRy

(
1 +

Rx −Ry

Rx +Ry

cos 2θ
)

In equations (1) are also taken into account the presence

of an external longitudinal magnetic field, and ωH =
eH

mc2γ0β0

, the dimension of this magnitude - the inverse

length.Invariant system (1) can be represented as:

I = A1(z)x
′2 + 2A2(z)x

′x+A3(z)x
2 +B1(z)y

′2 +

2B2(z)y
′y +B3(z)y

2 + C1(z)x
′y′ +

C2(z)x
′y + C3(z)xy

′ + C4(z)xy (2)

From condition dI
dz
≡ 0 using (1) we obtain:

A′

1 = −2A2 + ωHC1,

A′

2 = −A3 +A1α(z) + 0.5ωHC3 − 0.5C1β(z),

A′

3 = 2A2α(z)− C3β(z),

B′

1 = −2B2 − ωHC1

B′

2 = −B3 +B1γ(z)− 0.5ωHC2 − 0.5C1β(z),

B′

3 = 2B2γ(z)− C2β(z),

C′

1 = −C2 − C3 + 2ωH(B1 −A1),

C′

2 = −C4 + C1γ(z)− 2A1β(z) + 2ωHB2,

C′

3 = −C4 + C1α(z)− 2A2ωH − 2B1β(z),

C′

4 = C2α(z) + C3γ(z)− 2B2β(z)− 2A2β(z). (3)

Converting, furter, I. Instead x′, y′ introduce variables ξ, η.

x′ = ξ cosα+ η sinα, y′ = −ξ sinα+ η cosα (4)
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Suppose that tan(2α) = C1/(B1 − A1). If then as-

sume ξ1 = ξ + (x cosα(A2 + C2/2) − y sinα(B2 +
C3/2))/P, η1 = η+(x sinα(A2 +C2/2)+ y cosα(B2 +
C3/2))/Q, one should obtain:

I = Pξ21 +Qη21 +Ax2 +By2 + Cxy (5)

where

P = A1 +B1 −
√
(A1 −B1)2 + C2

1 ,

Q = A1 +B1 −
√
(A1 −B1)2 + C2

1 ,

A = A3 +K/Λ, B = B3 + L/Λ,

C = C4 +M/Λ,Λ = A1B1 − C2
1/4,

K = A2
2B1 − 0.5A2C1C3 + 0.25A1C

2
3 ,

L = A1B
2
2 − 0.5B2C1C2 + 0.25B1C

2
2 ,

M = A1B2C3 + A2B1C2 −A2B2C1 − 0.25C1C2C3. (6)

If we assume that the distribution function is:f = δ(I −
1), the integral should be calculated for the density of the

particles:∫
dξ1dη1δ

(
Pξ21 +Qη21 −Ax2 −By2 − Cxy − 1

)
=

π√
PQ

σ
(
1−Ax2 −By2 − Cxy

)
,

where σ(x) Heaviside function, σ(x) = 1, x > 0, σ(x) =
0, x < 0.To bring to the principal axes of the bunch should

take advantage of the relations, expressing x1, y1 wia x, y.
Supposing tan 2θ = C

B−A
, we obtain

Ax2 +By2 + Cxy =
x2
1

R2
x

+
y21
R2

y

,

R2
x =

2

A+B −
√
(A−B)2 + C2

,

R2
y =

2

A+B +
√
(A− B)2 + C2

.

There remains the phase volume: V = Λ(AB − C2/4) ≡
const = Λ(A3B3 −C2

4/4)−B3K −A3L+ (C4/2)M +
(A2B2−C2C3/4)

2.Important characteristic beam are rms

values. You can express the mean values through coeffi-

cient quadratic form Ixy. For example,

x′2 =
B1

2Λ
, x2 =

B

2(AB − C2/4)
,

y′2 =
A1

2Λ
, y2 =

A

2(AB − C2/4)
. (7)

Determing values:

Ex(z) = B1(z)B(z)/

V,Ey(z) = A1(z)A(z)/V,

beam emittance are in x and y direction. To solve the sys-

tem (3) to set the initial conditions - the values of functions

Ai, Bj , Ck if z = 0.

SOLUTION OF THE EQUATIONS

To find out the conditions under which the conditions

of possible solutions for the stationary beam envelopes.

Put ωH = 0 and all Cj ≡ 0. So invariant I mai be rep-

resented as sum of I = I1 + I2, where I1 = A1x
′2 +

2A2x
′x +A3x

2, I2 = B1y
′2 + 2B2y

′y +B3y
2. Constant

solutions for Rx, Ry may be obtained if A2 ≡ B2 ≡ 0.
Except initial conditions A2(0) = 0, B2(0) = 0 must be

derivatives vanish at the starting point. From (3) follows:

A3(0) = A1(0)α(0), B3(0) = B1(0)γ(0). One can ob-

tain:

A1 =
A3

2i
√
B3

(1/
√
B3 + 1/

√
A3),

B1 =
B3

2i
√
A3

(1/
√
B3 + 1/

√
A3).

Putting in this equalities A3(0) = 0.9, B3(0) = 0.1. Then,

in the case of a force field in the solution of system (3) can

be constant valuesRx ≡
√
10, Ry ≡

√
1/0.9, B1(0) =

2/9i, A1(0) = 6/i. This is a very characteristic change

of solutions when defining a small field(ωH = 0.003), as

shown in Figure 1.
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Figure 1: The dependence of the beam size Rx(z), Ry(z)
from coordinate.
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Figure 2: The dependence of emittance Ex(z), Ey(z) from

coordinate.

From Fig.1. It shows that the beam dimensions remain

substantially constant up to a certain point (i.e. range of

relatively small amplitude) after reaching these sizes vary

at a constant frequency and a substantially greater ampli-

tude. From Fig.2. You can see what is happening pumping

emittance, and it was after reaching a point where the emit-

tance compared begin intense oscillations of the transverse
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dimensions of the beam. The above initial conditions un-

der which the A1(0) �= B1(0) does not correspond to the

conventional cathode elliptical shape whose Rx �= Ry, and

the spread of the initial transverse velocities are the same

in the directions (ie, must be made equal A1(0) = B1(0)
). Here are the results of a solution of (3) in the case of

an isotropic distribution of initial velocities, assuming that

A1(0) = B1(0) = 25.
In Fig. 3 dependences are given sizes Rx(z) and Ry(z)

at isotropic distribution of initial velocities, in Fig.4 depen-

dences are given emittances Ex(z) and Ey(z) at isotropic

distribution of initial velocities.
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Figure 3: The dependence of the beam size Rx(z), Ry(z)
from the coordinates of an isotropic distribution of initial

velocities.
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Figure 4: The dependence of emittance Ex(z), Ey(z) from

the coordinates of an isotropic distribution of initial veloc-

ities.

CONCLUSION

In this case, it should be noted quite chaotic dependence

of the beam characteristics of the longitudinal coordinate.

At the initial stage can be seen pumping emittance, and

subsequently deprived of regular structure vibrations, the

beam sizes also vary. Thus, in the work of the model

Kapchinsky obtained system of equations that allows to

study characteristics beam compensated charge with an el-

liptical cross-section in a constant longitudinal magnetic

field. Obtained partial solutions, describing the state of the

beam. It seems likely that the management performance

characteristics of the beam should be used alternating field,

which is supposed to study in the future.
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