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ON APPLICATION OF MONTE CARLO METHOD
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Abstract

The paper presents the application of random grid walk
for Dirichlet problem solving for Poisson equation.
Boundary value problem is discretized and reduced to the
system of linear algebraic equations. The matrix of this
system is used for stochastic matrix constructing. Thus,
there is a possibility of Markov chains obtaining. The
special random value is defined on Markov chain
trajectories; this value is used for approximation of the
desired solution. The advantages of this method are
discussed in the paper.

The algorithm is applied for electric potential
calculation in the cell of support lattice of exit window in
large-aperture electron accelerator.

DIRICHLET PROBLEM FOR POISSON
EQUATION

Consider the Dirichlet problem for electric potential.
Poisson equation for unknown potential u(x,y) has the

form

u u  ~
y‘*‘W:f(X,y), (x,y)eG (1

with boundary conditions
U p=px.y). 2)

Here GC R’ is some domain, ' is the boundary of

the domain G, f(x, y) and @(x,y) are given functions.

Let us consider problem (1)-(2) discretization algorithm
for the rectangle domain. The modification of this
algorithm for the domain of any other form is given in the
book [1].

For numerical solution of Dirichlet problem (1)-(2) we
introduce sufficiently fine grid S with the step [:

S={s,._j=(x,.,yj): x =i, y;=jl, i=0,L,, j=0,L",}.
We distinguish the set
Sp =15, =(x.y)eS: i=0,L,j=0,L}.

of boundary grid points
The

internal grid points setis S; =S\ S.

After that we introduce the following grid functions:
{”1‘/ = ”(Si‘/): S;i; € S}’ {J?,j = J?(si,j) COSiE SG}’
o, =060 s, es:)

Let us replace the equation (1) at internal grid points by
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the difference equation

U 2(11/4)(”1‘—1,]‘ tup, U Y,y _lzfi,_j) . (3)
At boundary grid points we assume
u; =Px;,y;). “4)

The solution of algebraic system (3)-(4) converges to
the solution of Dirichlet problem (1)-(2) as [ — 0 [2,3].

Let us number all the grid points in any order (using
one index) and rewrite the equations (3)-(4) in the same
order. Now the grid S is described as follows:

S={(c. 50 k=LL}. where L=(L, +1)(L, +1). Let I,

and I be the sets of numbers of internal and boundary
grid points correspondingly.

After that we introduce the grid
w=Qdty)s [ =(fennfy) =9

representing the grid values of potential, right-hand part
of equation (1) and boundary function correspondingly.
Now the system (3)-(4) takes the form

functions

and

u=Au+f, (5)

where A is Lx L matrix of coefficients; L -vector f is
determined as follows:

~1/HPf, iel
@, i€lp
As for matrix A, when i€ I, the line A, =(a,,,....a,,)

contains four elements equal 1/4 and other elements

zero; if i€ I the line 4, is zero.

“WALK-ON-GRID” METHOD

Stochastic Matrix

To obtain the solution of the system (5) we apply
“walk-on-grid” algorithm.
Let us construct stochastic matrix P by the rule:

. p[j>0ifaij>0 L e
el. > ’ ’ , :LL, :1,
l G {p[’j =0 lf a,',/ =0 J ;pu

iel,=p,, =3, j=LL,
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where &, ; is Kronecker delta. Evidently, every line of

matrix P presents the probability distribution. Besides,
let wus introduce initial probability distribution

L
p=(pyse-sPy) (Zp,:l, p; 20). Using the set {p,P}

i=1
we can simulate Markov chain; in this case p is initial
states probability vector and P is transition matrix.

Markov chain simulation

Consider the problem of calculation of scalar product
(h,u) , where h is prescribed L -vector.

Markov chain may be considered to describe the
evolution of the object called “particle”. The particle
changes its state in accordance with chain trajectory.

Let us assign the “weight” O, to moving particle.

Suppose the “weight” to change in the process of particle
movement. For “weight” determination let us introduce
the values

_{hi/pi’ pi>0

0, pi=0’ 0, pi,j:O ’

a. . ii» Dii > 0
4q;.; :{ :.1/1’:,/ Puj (7
where I, j=1L.
The particle is “born” at some initial grid point; we
obtain its number i, as a result of random variable

simulation with probability distribution p=(p,,...,p.).
l
O-0-0-50
'_@_ 18/‘_’(\19_
| § ¢ | I
(D) (D805
| [ { | |
B0
OO0
Figure 1: Random walk on grid (L=25)
The initial “weight” of particle is O, = q;, - We obtain

next grid point number i by random variable simulation

B =(py1»-pyn)s B
the line of stochastic matrix P . The particle passes to the
Particle

with probability distribution

point numbered j with probability p, ;.

“weight” becomes equal O, =g, 4, > and so on. We

calculate the “weights” by recurrent formula

Q() = Qio ’ Qm = Qm% : qim,, gy

boundary grid point with number i,

If new particle state is
, the particle stays at
this point with probability P, =1 and the chain

terminates. Clearly, if one continues simulation, in view

ISBN 978-3-95450-181-6
368

Proceedings of RuPAC2016, St. Petersburg, Russia

of Eq. 7 the result is i,, =i,, ¢, ;

ot

=0, Q,,,=0 and

so on. So in this case we obtaln the chain of the length
HM:iy =i —>---—1i,. The example of Markov chains is

depicted in Fig. 1, L=25.
Special random variable

Let us introduce random variable fﬂ defined on the
trajectories of the Markov chain of the length # [1]:

6 =30,1, or =3 it g
Z ;}pluplull pl |I "
Here f, = ¢, inview of Eq.6.
u u

For internal grid points the matching conditions are
satisfied:

p; >0 if h #0,
pi;>01f a;#0.

Consequently, one can argue [1] that

Consider N independent trajectories beginning at the

,0,1,0,. ..,OJ, the
-

scalar product provides the calculation of one component
of the solution: u; =(h,u). In view of the statement (9)

point numbered i,. If h:ﬁ:[o,...

this component may be calculated by formula

u; :(};,u)g)Mgﬂ z%(fﬂl +"'+§ﬂw)' (10)

Consider the following particular case. Let us take h as

A

initial ~ distribution vector: p=h and assume
a,;, i€l — . . "
Pij :{5,-,_,'» e Ir’ j=LL. In this case the “weights
along the trajectory are as follows: O, =0, =---=0, =1
until the chain reaches the boundary; after that

Q1 =040 =---=0. Consequently, calculation of the

values of random variable fﬂ (See Eq. 8) becomes

especially simple:

gﬂ:(ﬁ,*‘*ﬁﬂ,. +(pl.ﬂ). (11)

The formulae (10)-(11) provide the computational
scheme for determination of one component of unknown
vector u .

Particle dynamics, new methods of acceleration and cooling



Proceedings of RuPAC2016, St. Petersburg, Russia

NUMERICAL RESULTS

Electromagnetic fields determination in different
devices and beam evolution modelling and investigation
as well as optimization of beam dynamics and device
parameters often includes boundary value problems
solving for Poisson equation [4-26]. Monte Carlo method
provides the simple and effective algorithms for
computation and parallelization [1-2, 27-32].

This paper deals with application of ‘“walk-on-grid”
method to electric potential distribution determination in
the cell of support lattice of exit window in large-aperture
electron accelerator [27].

The application specifics of electron sources of large
cross-section beams in gas laser or radiation-chemical
technologies demands beam extraction from the vacuum
into the gas at atmospheric pressure (or higher).
Consequently, the obligatory component of such electron
source construction is a window with thin metal foil and
support lattice. The foil is impermeable to gas but quite
freely passes the accelerated electrons [33].

The electron accelerator provides formation,
acceleration and extraction of the electron beam in the
workspace of gas discharge chamber. Particle beam

energy is 150keV, beam cross-section square is

700mm’*, current density in stationary mode reaches

O.lZOmkA/mmz. Support lattice bar width is 1 mm,

height is 12 mm, the distance between bars is 5 mm.
Charge density value in the cell is calculated using the
accelerator characteristics and equal
P, =5.19-10°C/m" .

Let us consider the potential calculation domain to be
the rectangle G = [O,a]x [O,b] . We suppose the potential
to be

distribution zZ = const

identical.

in any cross-section

Electron beam moves through the side y=>b, so the

potential distribution is prescribed on this side. The
potential on remaining sides of rectangle are supposed to
be zero.

Boundary conditions are as follows:

u(0,y) =u(a,y) =0,

w(x,0) = 0, u(x,b) = sin = x,
a

0<y<b,

0<x<a.

The calculation was performed for various values of
grid step / and trial number N .The results are presented
for 1=0.0024, N =5000 . The potential was calculated
by the formula (10). The potential distribution in the cell
of support lattice of exit window in large-aperture
electron accelerator is presented in Fig. 2.

PARALLEL PROCESSING

Monte Carlo methods allow the perfect parallelization
of the computational process.
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Figure 2: Potential distribution in the cell.

Parallel computing was performed for the problem
under study. The numerical experiment shows that
parallelization gives extremely low benefit for the grids
with large step. Consequently, it is more efficient to use a
fine grid.

The analysis of parallel processing efficiency is
illustrated in Fig. 3. The graphs are presented for various
number of threads and various number N of Markov
chains. The best computing time result is achieved for 4
threads. Threads number increasing does not lead to
appreciable time advantage.
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Figure 3: Parallel processing.
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