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Abstract

The problem of simultaneous optimization of the ensem-

ble of trajectories and some selected trajectory arises in the

research of the charged particle beam dynamics [1–8].

The present work suggests the use of a smooth functional

for the evaluation of the selected trajectories and a mini-

max functional for the evaluation of the dynamics of the

beam of trajectories. A combination of those functionals is

considered.

INTRODUCTION

In the present work a new approach to the beam dy-

namics optimization, based on the use of smooth and non-

smooth functionals for the evaluation of the dynamics of

the charged particles, is developed. The problem of simul-

taneous optimization of the program motion and the en-

semble of trajectories is formulated. The dynamics of the

program motion is evaluated using a smooth integral func-

tional and the dynamics of the ensemble of disturbed mo-

tions is evaluated using a non-smooth functional.

In this paper the analytical form of the variation for the

combination of a smooth and non-smooth functionals is

presented, allowing to develop various methods of opti-

mization. Those methods can be implemented, for in-

stance, to the optimization of particle dynamics in a RFQ

structure. It should be noted that the problems of analysis

and optimization of the particle dynamics in RFQ acceler-

ators in an equivalent running wave were explored in nu-

merous works [9–14], but those did not utilize non-smooth

functionals.

MATHEMATICAL MODEL

Let us consider the following system of differential equa-

tions
dx

dt
= f(t, x, u), x(0) = x0. (1)

Here t ∈ [0, T ] — independent variable, T > 0 is a

fixed moment of time; x — n–dimensional phase-vector;

u = u(t) — r–dimentional piecewise continuous con-

trol vector-function from a class D; f(t, x, u) — n–

dimentional reasonably smooth vector-function . Let us

call the solution of system (1) a program motion.

At the same time we consider the so-called disturbed mo-

tions, which are the solutions of the following system of

equations [1]

dy

dt
= F (t, x, y, u), y(0) = y0 ∈M0. (2)
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Here y — n–dimensional phase-vector; F (t, x, y, u) — n-

dimensional reasonably smooth vector-function; M0 — a

compact set.

The trajectories of system (2) are vector-functions y =
y(t, x(t, x0, u), y0, u), continuously dependent on the pro-

gram motion x(t, x0, u) and initial conditions y0 ∈M0.

Let us introduce the set of terminal positions of the system

(2)

Y = {y(T, x0, y0, u) | u ∈ D,x(0) = x0, y0 ∈M0}.

On the solutions of system (1) let us introduce a functional

I1(u) =

T
∫

0

ϕ1(x(t, x0, u))dt+ g(x(T ))

and on the trajectories of system (2) the following func-

tional

I2(u) = max
yT∈Y

ϕ2(Y ).

Here ϕ1 and ϕ2 are non-negative smooth functions.

In the present paper the following functional is studied

I(u) = I1(u) + I2(u).

VARIATION OF THE FUNCTIONAL

Let us consider a variation of the control function ∆u(t),
so that ũ(t) = u(t) + ∆u(t) ∈ D.

Let us introduce a setRT (u), dependent on the control u =
u(t) and defined by expression

RT (u) = {ȳ0 : ȳ0 ∈M0, ϕ2(y(T, x0, ȳ0, u)) =

= max
y0∈M0

ϕ2(y(T, x0, y0, u))}.
(3)

Following the logic of [10] lemma can be proved.

Lemma Let us consider sets RT (u) and RT (ũ), defined

by the relations (3), corresponding to the allowed controls

u(t) and ũ(t), then

max
y′′
0
∈RT (ũ)

min
y′
0
∈RT (u)

‖y′′0 − y′0‖ → 0 when ‖∆u‖L → 0.

The variations equations correspoding to the systems

(1 –2) are as follows

dδx

dt
=
∂f (t, x, u)

∂x
δx+∆uf (t, x, u) ,

δx(0) = 0;

dδy

dt
=
∂F (t, x, y, u)

∂x
δx+

∂F (t, x, y, u)

∂y
δy+

+∆uF (t, x, y, u) ,

δy(0) = 0.
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Here

∆uf (t, x, u) = f(t, x, u+∆u)− f (t, x, u) ,

∆uF (t, x, y, u) = F (t, x, y, u+∆u)− F (t, x, y, u) .

Function ϕ2 (y(T, x0, y0, ũ) can be represented in the fol-

lowing form

ϕ2 (y(T, x0, y0, ũ) + ∆y(T, x0, y0)) =

= ϕ2 (y(T, x0, y0, u)) +
∂ϕ2 (y(T, x0, y0, u))

∂y
δy+

+ o (‖∆y(T )‖C) .

(4)

Using (4) the variation of the functional I2(u) can be ob-

tained as follows

δI2 = max
y0∈RT (u)

∂ϕ2 (y(T, x0, y0, u))

∂y
δy(T ).

The variation of the functional represented by a smooth

function is [1, 3]

δI1 =

T
∫

0

∂ϕ1 (x(t, x0, u))

∂x
δxdt+

∂g(x(T ))

∂x
δx(T ).

Then the variation of the functional I(u) is

δI = δI1 + δI2.

Let us introduce functions ψ and λ

ψ∗
′

+ ψ∗
∂f

∂x
=
∂ϕ1

∂x
− λ∗

∂F

∂x
,

ψ∗(T ) = −
∂g(x(T ))

∂x
,

λ∗
′

+ λ∗
∂F

∂y
= 0,

λ∗(T ) = −
∂ϕ2(Y )

∂y
.

Then the variation of the functional can be written as fol-

lows

δI(u) = max
y0∈RT (u)

T
∫

0

(ψ∗∆uf(t, x, u)−λ
∗∆uF (t, x, y, u))dt.

Let us introduce Hamilton’s function

H(t, x, u, ψ, λ, u) = ψ∗f(t, x, u) + λ∗F (t, x, y, u),

then variation will be

δI(u) = max
y0∈RT (u)

T
∫

0

(

H(t, x, y, ψ, λ, u)−

−H(t, x, y, ψ, λ, ũ)
)

dt.

The obtained expression for the variation of the functional

can be applied to various problems of optimization in

electro-physical devices.

BEAM DYNAMICS IN A RFQ

STRUCTURE

Approach using systems of differential equations (1)–(2)

can be applied to the modeling of beam dynamics in a RFQ

accelerator in an equivalent running wave. The dynam-

ics of a synchronous particle is described by the following

equations [13, 14]

dγs

dz
= u1

qU

2m0c2
cosu2,

γs(0) = γs0.

Disturbed motions are presented by the deviations in phase

ψ = ϕ − ϕs and reduced energy pψ = γ − γs from the

synchronous particle

dpψ

dz
= u1

qU

2m0c2
(cosu2 − cos(ψ + u2),

pψ(0) = pψ0 ∈M0,

dψ

dz
=

2π

(γ2s − 1)3/2
pψ,

ψ(0) = ψ0 ∈M0.

This model quite accurately describes the dynamics of

the particle beam.

Figure 1 below shows the acceleration intensity. Figure 2

shows the phase of the synchronous particle.

Figure 1: Acceleration intensity.

Figure 2: Phase of the synchronous particle.
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Figure 3 shows reduced energy deviations from the syn-

chronous particle. Figure 4 shows phase deviations from

the synchromous particle.

Figure 3: Beam reduced energy.

Figure 4: Deviations from the synchronous phase.

The modeling data is pretty good, but can be futher im-

proved by implementing the proposed appoach to optimiza-

tion.

The following functionals can be introduced.

Let us introduce a smooth functional I1(u)

I1(u) =

L
∫

0

ϕ1(Adef )dz + g(x(L)).

HereAdef — is the defocusing factor, g(x(L)) = (γs(L)−
γ̃(L))2 — in this case the aim of the optimization is the

minimization of the defocusing factor and evaluation of the

deviation of the reduced energy of the synchronous particle

from a fixed value γ̃ at the end of the accelerating structure.

The non-smooth functional I2(u) can evaluate the maxi-

mum deviation of particles in phase and reduced energy

from the synchronous particle. In paticular, the following

functional can be introduced

I2(u) = max
yT∈Y

ψ2.

Resulting functional I(u) = I1(u) + I2(u) allows to con-

sider simultaneously the program motion and the disturbed

motions in the problem of optimal control.

CONCLUSION

The proposed approach to simultaneous optimization of

program and disturbed motions looks very promising in

problems where it is important not just to evaluate the pro-

cess in general, but also to take into account the worst, the

most deviating particles.

The obtained variation of the functional can be used for

construction of directed methods of minimization.
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