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Abstract

Problem of stability of charged particle dynamics in the

Penning-Malmberg-Surko trap is considered. It is shown

that, magnetron motion is unstable for sufficiently small

value of parameter a (which is the amplitude related pa-

rameter of the Rotating Wall (RW) electric dipole field).

This contradicts the conclusion of the article [1] that there

is a possibility of the compression of magnetron motions

in the case of | a |→ 0. So it may indicate that the simpli-

fied model of the dynamics used by the author of the article

is not accurately enough to describe the dynamics of the

original system.

INTRODUCTION

Present report refers to the problem of the study of

charged particle dynamics in the Penning-Malmberg-Surko

trap. Various models of particle dynamics describing the

magnetron and cyclotron motions are considered. The

problems of the stability of the magnetron motion are in-

vestigated. In articles [1,2] the compression and expan-

sion rates of the magnetron radius are discussed. Compres-

sion rates have been presented. The particle does not leave

the area of the rotating field, and the bunch is compressed.

These results are questionable.

PROBLEM STATEMENT

We consider a charged particle in the field of the poten-

tial

Φ(z) =
m

q
· ω

2
z

2
· (z2 − r2

2
)+

+
m

q
a · z · r · cos(θ + ωrt), (1)

and homogeneous longitudinal magnetic field ~B = ~ezB.

Here m and q are the mass and the charge of the particle,

ωz is the frequency of the particle longitudinal oscillations

in the axially symmetric electric field of the trap electrodes,

a and ωr is amplitude related parameter and the frequency

of the Rotating Wall (RW) electric dipole field asymmetric

in the z-direction, z and r are the axial and radial coordi-

nates with the axis coinciding with symmetry axis of the

trap electrodes.
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The magnitude of the parameter a can be estimated as

a =
q

m
· Ur

2RL
, (2)

where Ur is the maximum of the potential difference be-

tween the segmented electrode plates, 2L is the length of

the dipole RW field and R is the curvature radius of the

cylindrical plates.

The charged particle motion in these fields is described

by the following system of equations:

ẍ =
ω2
z

2
· x− a · z · cos(ωrt) + Ωcẏ − kẋ, (3)

ÿ =
ω2
z

2
· y + a · z · sin(ωrt)− Ωcẋ− kẏ, (4)

z̈ = −ω2
z
· z − kż − a(x · cos(ωrt)− y · sin(ωrt)). (5)

Here Ωc = qB/m is the particle cyclotron frequency,

the parameter k presents the friction force related to the

particle scattering by the trap buffer gas molecules.

Further, we transform the system (3-5) to the complex

form. Multiplying the equation (4) by imaginary unit i and

adding it with equation (3) we come to the equation for the

complex function

ξ(t) = x+ iy, (6)

ξ̈ + iΩcξ̇ + kξ̇ − ω2
z

2
· ξ = −a · z exp(−iωrt). (7)

The equation (7) together with the equation (5) describes

the particle motion in the trap.

FREE PARTICLE MOTION IN THE TRAP

The general solution of the homogeneous differential

equation in (7) is the following

ξ(t) = A1 · exp(iω+t) +A2 · exp(iω−t), (8)

where

ω± = −Ωc − ik

2
∓ 1

2

√

(Ωc − ik)2 − 2ω2
z
. (9)

The constants A1, A2 should be found using the initial

conditions.
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At the typical values of the trap parameters we have the

relations between the frequencies:

| ω+ |∼ Ωc ≫ ωz ≫| ω− |∼ ωm ≡ ω2
z
/(2Ωc) ≫ k.

(10)

Here ωm is so called magnetron frequency: the fre-

quency of the particle rotation in the crossed fields of the

trap – longitudinal magnetic field B and radial component

of the electric field (1) at a = 0. The relations (10) allow us

to find the approximate values of the frequencies ω− (lower

sign in (9)) and ω+ (upper sign in (9)).

Rewrite the equation (9) as following:

ω∓ = −Ωc − ik

2
± Ωc

2

√

1 + (−2ik

ωc

− k2

Ω2
c

− 2
ω2
z

Ω2
c

). (11)

One can show that

ω+ ≈ −(1− α)Ωc + i(1 + α)k ≈ −Ωc + ik, (12)

ω− ≈ −αΩc − iαk ≈ −ωm − i
kωm

Ωc

, (13)

α =
ω2
z

2Ω2
c

.

Then the solution (8) can be presented as following:

ξ(t) = A1 exp(−iΩct− kt) +A2 exp(−iωmt+ (14)

+(kωm/Ωc)t),

A1 ≈ 2ωmξ0 −
ξ̇0
Ωc

, A2 ≈ ξ0 −
ξ̇0
Ωc

.

The first term in (14) describes a free cyclotron rotation

of the particle in the field ~B damped with the decrement k.

The second term describes the particle rotation around the

trap axis with the angular frequency ωm, i.e. the magnetron

rotation. Its amplitude increases in time with the increment

kωm/Ωc the magnetron orbit expansion related to the par-

ticle scattering by the buffer gas molecules (the parameter

k).

PARTICLE MOTION STABILITY IN THE

TRAP WITH RW DIPOLE FIELD

In case of time-dependent linear differential system to

investigate a stability of system (3-5) one should consider

the set of characteristic indices of the system (which are

the same in stationary case as real parts of characteristic

numbers of the system with a = 0). Obviously, if at least

one of characteristic indices of the system is positive then

it is unstable in the Lyapunov sense.

In view of the stability of the characteristic indices of

linear system (3-5) with respect to small perturbations [3],

the system (3-5) has a positive characteristic index for suffi-

ciently small a 6= 0 because it has the characteristic number

with a positive real part for a = 0 (as it was shown above)

and should be unstable in the Lyapunov sense at least for

| a |< k
ωmωz

Ωc

√
2
. (15)

It should be noted that the stability of the characteristic

indices of the system (3-5) means their continuity respec-

tively to a parameter a.

DECOUPLING THE MAGNETRON AND

CYCLOTRON MOTIONS

The authors [1,2] perform the change of variables in the

equations (3-5) defined by the equality

V
± =

dr

dt
+ ω∓ẑ × r, (16)

where ẑ =





0
0
1



 is a unit vector, r =





x
y
0



 ,V ± =





V ±
x

V ±
y

0



 , ω± = 1

2
(Ωc ±

√

Ω2
c
− 2ω2

z
).

Then, the equations (3-5) take the following form:

˙V ±
x = ω±V

±
y

− k
(

V ±
x

+
ω∓

ω+ − ω−
(V +

x
− V −

x
)
)

− (17)

−a · z · cos(ωrt),

˙V ±
y = −ω±V

±
x

− k
(

V ±
y

+
ω∓

ω+ − ω−
(V +

y
− V −

y
)
)

−(18)

−a · z · sin(ωrt),

z̈ = −ω2
z
z − kż − a

ω+ − ω−

[

(V −
y

− V +
y
)cos(ωrt)−(19)

−(V −
x

− V +
x
)sin(ωrt)

]

.

Transforming of the system (17-19) by introducing the

complex variables

V +
c

= V +
x

+ iV +
y
;

V −
c

= V −
x

+ iV −
y
. (20)

˙V +
c = −

(

k
ω+

ω+ − ω−
+ iω+

)

V +
c

+ k
ω−

ω+ − ω−
V −
c

− (21)

−a · z · exp(−iωrt),

˙V −
c = −k

ω+

ω+ − ω−
V +
c

+
(

k
ω−

ω+ − ω−
− iω−

)

V −
c

− (22)

−a · z · exp(−iωrt),

d2

dt2
z = −ω2

z
z − k

dz

dt
− a

ω+ − ω−
× (23)

×Re
[

i(V +
c

− V −
c
) exp(iωrt)

]

.

The characteristic equation of system (21,22) for a = 0
has the form
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λ2 + (k + i(ω+ + ω−))λ− ω+ω− = 0. (24)

Defining the roots λ1,2 = iω1,2 via the

“frequencies”ω1,2, we obtain

ω1,2 = − (ω+ + ω−)− ik

2
±

± 1

2

√

((ω+ + ω−)− ik)2 − 4ω+ω− =

= −Ωc − ik

2
± 1

2

√

(Ωc − ik)2 − 2ω2
z
. (25)

Let us note that characteristic indices of the systems (3-4)

and (21-22) for a = 0 are the same (do compare (11, 12,

13, 25)). Indeed ω+ + ω− = Ωc and ω+ω− = ω2
z
/2 so

formulae (25) and (9) are the same. So it is obvious that

the system (21-22) at a = 0 has characteristic root with a

positive real part and thus is unstable (Re(iω1) > 0).
By the property of the stability of the characteristic in-

dices the system (21-23) is unstable also at sufficiently

small a 6= 0, at least for | a |< k ωmωz

Ωc

√
2

(the condition

(15)), i.e. similar to the system (3-5).

CONCLUSION

Given the stability of characteristic indices of the linear

systems under consideration with respect to small perturba-

tions, magnetron motion is unstable for sufficiently small

a 6= 0 (the condition (15)). This contradicts the conclu-

sions of the article [1] that there is a possibility of the com-

pression of magnetron motions in the case of | a |→ 0
(| a |≪ k

√
ωzΩc). The contradiction may indicate that the

simplified model of the dynamics and the approach used

by the author [1] of the article do not accurately describe

the dynamics of the process, because it leads to qualita-

tive discrepancies in the behavior of the original system

and simplified system. And, as shown above, at least for

| a |< k ωmωz

Ωc

√
2

magnetron motion is unstable and the com-

pression is impossible.

It is also doubtful that a positron bunch compression may

occure when the rotating electric field is applied on the all

length of the storage area (see eq.(1)). It was observed in

the experiment [4] that good compression can be achieved

as long as the axial extent of the RW electrode is less than

half of the plasma length. We also observed [5] the inabil-

ity of accumulation region in the case where the rotating

electric field length coincides with the length of the storage

region.

It should be noted that the existence of compression

found in experiment can not be explained with the analy-

sis presented in [1,2]. There is other explanation [6] of the

rotating electric field effect on the charged particles accu-

mulation in traps at large and small particle densities [5,6].
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