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Abstract

One of the most informative diagnostic methods dielec-

tric materials is the analysis of the complex permittivity

depending on the frequency of the electric field [1]. Di-

electric chart is the dependence of the imaginary part of the

complex permittivity of its real part. Thus, difference be-

tween the real dielectric chart from the reference or change

it during the operation can be a means of diagnostics of di-

electric materials. Dielectric chart in the classical theory of

Debye is a semicircle with its center lying on the real axis.

For solid dielectric the dielectric chart deviation from the

semicircle can be quite large, but it still remains a circular

arc. This deviation is characterized by parameter α (in the

case of the Debye α = 0). To clarify the physical mean-

ing of the deviations of the experimental data on the Debye

theory, expressed in the value of α, several possible causes

have been considered: the effect hindered reorientation of

dipoles, the effect of the non-sphericity of the molecules,

the complex nature of viscosity. However, the main cause

of deviations, in our opinion, is the availability of the distri-

bution of relaxation times around a central relaxation time,

in particular, due to defects in the sample. Gaussian dis-

tribution width increases rapidly with increasing α. In this

paper we propose an algorithm for calculating α, allowing

you to quickly determine the condition of the sample on a

single parameter.

INTRODUCTION

One of the most informative diagnostic methods for di-

electric materials is the analysis of the complex permittivity

ε∗ depending on the frequency of the electric field [1, 2].

But the presentation in the form of frequency dependency

does not allow to easily analyze data and assess the signif-

icance of the deviation from the expected relationship. A

more appropriate presentation is a dielectric diagram (Ar-

gand diagram) in the complex plane when built dependence

of the imaginary part of the complex permittivity ε′′ of the

real part of it ε′, and each point is characterized by individ-

ual frequency (Fig. 1). Difference between the real dielec-

tric chart from the reference or change it during the opera-

tion can be a means of diagnostics of dielectric materials.

DIELECTRIC DIAGRAM

Dielectric diagram according to the classical equations

of Debye is a semicircle with its center lying on the real

axis (ε′), and crosses the real axis at the points ε0 and ε∞
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(see Fig. 1). We introduce the notation

u = ε∗ − ε∞,
v = (ε∗ − ε∞)iωτ0,

u+ v = ε0 − ε∞,

where τ0 — relaxation time, ε0 — the value of the real part

of the dielectric permittivity at a frequency ω = 0, ε∞ —

the value of the real part of the dielectric permittivity at

a frequency ω → ∞, the difference between ε0 and ε∞
attributed to dipole.

The values v and u may be considered as vectors in the

complex plane, and in Debye case they are perpendicular,

and their sum is constant and equal to the real value of ε0−
ε∞.

The deviation from the semicircle can be very large for

solid dielectrics. Nevertheless, depending on ε′ ε′′ still rep-

resent circular arcs.

In equivalent circuit for the experimental dependence the

impedance is Z = τ0(iωτ0)
−α/(ε0 − ε∞), and the phase

angle between the active and reactive components does not

depend on the frequency and is equal to απ/2. Since the

angle between the axis ε′ and the radius vector to the point

ε∞ on diagram arc circle in the complex plane is also equal

to απ/2, it is reasonable to assume that the properties of the

dielectric are determined by the value α. Angle (1−α)π/2
(between the vectors v and u in the complex plane) does

not depend on the frequency and is equal to half of the arc

angle. Consequently,

u+ v = u[1 + f(ω)ei(1−α)π/2] = ε0 − ε∞,

where f(ω) — real function of frequency and other param-

eters. Since ei(1−α)π/2 = i(1−α), then

ε∗ − ε∞ = (ε0 − ε∞)/[1 + i(1−α)f(ω)].

From general considerations, it can be assumed that this

relationship will look ω(1−α), when the complex form ε∗

is the result of the initial hypothesis that the applied field

is given by E = E0e
iωt. If ω is the result of linear oper-

ations over the exponent, the dependence on ω is identical

to depending on the imaginary unit i, so that

ε∗ − ε∞ = (ε0 − ε∞)/[1 + (iωτ0)
1−α].

for 0 < α < 1.

The dependence of ln |u/v| on lnω:

ln |u/v| = (1− α) lnωτ0 =

(1− α) lnω + (1− α) ln τ0,
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Figure 1: Dielectric diagrams and respective equivalent circuits.
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Figure 2: The dependence of ln |u/v| on lnω.

is a linear function of which can be determined α and τ0
(see Fig. 2).

Then

ε′ − ε0 =
ε0 − ε∞

[

1 + (ωτ0)
1−α sin 1

2απ
]

1 + 2(ωτ0)(1−α) sin 1
2απ + (ωτ0)2(1−α)

=

1

2
(ε0 − ε∞)

[

1− sinh(1− α)x

cosh(1− α)x+ cos 1
2απ

]

,

ε′′ =
(ε0 − ε∞)(ωτ0)

1−α cos 1
2απ

1 + 2(ωτ0)1−α sin 1
2απ + (ωτ0)2(1−α)

=

1

2
(ε0 − ε∞)

cos 1
2απ

cosh(1− α)x+ sin 1
2απ

,

(1)

where x = lnωτ0. These expressions are reduced to the

case of Debye when α = 0. If α > 0 (0 6 α 6 1) the

range of variation of ε∗ is expanding, and the maximum of

ε′′ (at ω = 1/τ0) decreases.

Expressions (1) provide the following maximum value

ε′′ at the point ω = 1/τ0:

ε′′max =
1

2
(ε0 − ε∞) tan[(1− α)

π

4
].

At very low frequencies (see (1))

ε = (ε0 − ε∞)(ωτ0)
2−α cos

1

2
απ.

If ω ≪ 1/τ0, then admittance σ ∼ ωγ (1 6 γ 6 2),

corresponding 0 6 α 6 1.

EVALUATION OF DEFECTS IN THE

DIELECTRIC MATERIAL

To clarify the physical meaning of the deviations of the

experimental data from Debye theory, expressed in the

value of α, several possible causes have been considered:

the effect of dipoles hindered reorientation, the effect of the

non-sphericity of the molecules, the complex nature of vis-

cosity. However, the main cause of deviations, in our opin-

ion, is the availability of the distribution of relaxation times

around a central τ0, in particular, due to defects in the sam-

ple. Here we are not talking about different phenomena of

polarization or non-homogeneity of the material. The dis-

tribution of the relaxation times, proposed by Wagner [3],

is given by the logarithmic Gaussian type distribution

F (s)ds = (b/
√
π) exp(−b2s2)ds,

where s = ln(τ/τ0), parameter b determines the width of

the distribution. If we use the expression (1) for ε′′, we

obtain a different distribution function F (s) for relaxators:

F (s)ds =
1

2π

sinαπ

cosh(1− α)s− cosαπ
ds.

If we define the ε′ and ε′′ using numerical integration of

this expression it is possible to find b, which most closely

matches a given α. For example, if α = 0.23, found by the

above procedure b is equal to 0.6. Obviously, the Gaussian

distribution requires too high a concentration of the relax-

ation times nearby τ0, and distribution using α much wider

(see Fig. 3). Distribution width increases rapidly with in-

creasing α, and Gaussian distribution is getting worse ap-

proximation. For α = 0.5 95% of relaxation times are in

the range 0.001 < τ/τ0 < 1000 whereas only α = 0.75
only 72% of relaxation times are in the specified range.
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Figure 3: Comparing the distributions of relaxation times,

obtained by Wagner and dielectric diagrams.

CONCLUSION

The paper deals with the application of the dielectric di-

agram as a tool for processing of dielectric information. It

has been shown that its study allows to characterize the ma-

terial under test by parameter α, associated with the emer-

gence of the distribution of relaxation times around the

classic Debye relaxation time τ0. It should be noted that

the proposed method is limited to processing of dielectric

diagrams representing symmetrical arcs. Also the difficul-

ties of the physical explanation of relaxation time distri-

bution F (s) remain. In addition, the physical sense of the

real and imaginary parts of the impedance of the equivalent

electrical circuit Z = τ(iωτ)−α/(ε0 − ε∞) are unclear.
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