Paper | Title | Page |
---|---|---|
THPSC032 | The Study of the Electrical Strength of Selected Insulators With a Different Shape of the Surface | 615 |
|
||
Funding: Ministry of Science of the Russian Federation, unique identifier of applied research RFMEFI60414X0066. In the BINP SB RAS was proposed and created a source of epithermal neutrons for BNCT. The proton beam is obtained on a tandem accelerator with vacuum insulation. Sectionalized demountable feed through insulator is an integral part of the accelerator. Voltage from the high voltage source is distributed to the electrodes via resistive divider. Because of the small amount of current (hundreds of microamperes) flowing through the divider, dark currents that occur in the accelerating gaps, can significantly affect the uniform distribution of the potential along the accelerating channel, and, consequently, on the beam transportation. Therefore there is a need to change the design of the feed through insulator which will allow to set potentials at the electrodes directly from the high voltage rectifier sections. To study the feasibility of such changes has been designed and built an experimental stand, in which a single insulator with double height subjected to the same conditions as in accelerator. On the experimental stand was studied electrical strength of ceramic and polycarbonate insulators with a different shape of the surface. The paper presents the results of experimental studies of insulators. Their application will get rid of the voltage divider inside the feed through insulator and realize the scheme which allows to set potential on the electrode gaps directly from the rectifier section. This will increase the operating voltage of the accelerator and its reliability. |
||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPSB075 | Beam Injector for Vacuum Insulated Tandem Accelerator | 529 |
|
||
Funding: Applied research is carrying out with the financial support of the Russian Federation represented by the Ministry of Education and Science of Russia (unique identifier RFMEFI60414X0066). The Vacuum Insulated Tandem Accelerator is built at the Budker Institute of Nuclear Physics. The accelerator is designed for development of the concept of accelerator-based boron neutron capture therapy of malignant tumors in the clinic.* In the accelerator the negative hydrogen ions are accelerated by the high voltage electrode potential to the half of required energy, and after conversion of the ions into protons by means of a gas stripping target the protons are accelerated again by the same potential to the full beam energy. During the facility development, the proton beam was obtained with 5 mA current and 2 MeV energy**. To ensure the beam parameters and reliability of the facility operation required for clinical applications, the new injector was designed based on the ion source with a current up to 15 mA***, providing the possibility of preliminary beam acceleration up to 120-200 keV. The paper presents the status of the injector construction and testing. *B.F.Bayanov, et al. Nuclear Instr. and Methods in Physics Research A 413/2-3 (1998) 397-426. **A. Ivanov, et al. Journal of Instrumentation 11 (2016) P04018. ***Yu. Belchenko, et al. AIP Conference Proceedings 1097, 214 (2009); doi: 10.1063/1.3112515 |
||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |