Paper |
Title |
Page |
THCAMH05 |
The CC-18/9M Cyclotron System for Production of Isotopes for PET |
117 |
|
- R.M. Klopenkov, M.A. Emeljanov, A.V. Galchuck, Yu.N. Gavrish, P.A. Gnutov, S.V. Grigorenko, V.I. Grigoriev, M.L. Klopenkov, L.E. Korolev, A.N. Kuzhlev, A.G. Miroshnichenko, V.G. Mudrolyubov, G.V. Muraviov, V.I. Nikishkin, V.I. Ponomarenko, K.E. Smirnov, Yu.I. Stogov, A.P. Strokach, S.S. Tsygankov, O.L. Veresov
NIIEFA, St. Petersburg, Russia
- I.A. Ashanin, I.P. Grigoryev, A.S. Guchkin
CHTD, Moscow, Russia
|
|
|
The CC-18/9M cyclotron system has been designed, manufactured and delivered to JSC "NIITFA", Moscow to be operated in a pilot PET center. Acceptance tests have been conducted; design parameters of the updated cyclotron have been obtained: energy variation of accelerated proton and deuteron beams within the ranges of 12 - 18 and 6 - 9 MeV with currents of 150 and 50 mkA respectively. For the first time in NIIEFA practice the cyclotron is equipped with a target system intended for the production of F-18 and C-11 radionuclides for PET. At present the cyclotron system in the PET center is put into commercial operation.
|
|
|
Slides THCAMH05 [4.462 MB]
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUCASH04 |
Physical Start-up of the C-80 Isochronous Cyclotron |
179 |
|
- Yu.N. Gavrish, A.V. Galchuck, S.V. Grigorenko, A.N. Kuzhlev, V.G. Mudrolyubov
NIIEFA, St. Petersburg, Russia
- D.A. Amerkanov, S.A. Artamonov, E.M. Ivanov, G.A. Riabov, V.I. Yurchenko
PNPI, Gatchina, Leningrad District, Russia
|
|
|
Works on the creation of a cyclotron for the acceleration of H− ions at energies ranging from 40 up to 80 MeV have been carried out over a number of years in PNPI, the National Research Centre Kurchatov Institute. The cyclotron is intended for production of a wide assortment of radioisotopes for medicine including radiation generators (Sr-Rb, Ge-Ga), proton therapy of ophthalmic diseases, tests of radioelectronic components for radiation resistance, studies in the field of nuclear physics and radiation material science. In June, 2016 physical start-up of the cyclotron was realized in the pulsed mode; the beam of ~10 mkA was obtained at the inner probe, the extracted beam at the first diagnostic device was ~8 mkA and ~7.5 mkA at the final diagnostic device of the beamline. In the near future we plan to obtain the design intensity of 100 mkA.
|
|
|
Slides TUCASH04 [13.477 MB]
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUCASH05 |
The CC1-3 Cyclotron System. Installation and Test Results |
182 |
|
- V.G. Mudrolyubov, A.V. Antonov, M.A. Emeljanov, A.V. Galchuck, Yu.N. Gavrish, S.V. Grigorenko, V.I. Grigoriev, L.E. Korolev, M.T. Kozienko, A.N. Kuzhlev, A.G. Miroshnichenko, G.V. Muraviov, V.I. Nikishkin, V.I. Ponomarenko, K.E. Smirnov, Yu.I. Stogov, A.P. Strokach, S.S. Tsygankov, O.L. Veresov
NIIEFA, St. Petersburg, Russia
|
|
|
A unique CC1-3 cyclotron system has been installed in the Vinca Institute of Nuclear Sciences, Belgrade, Serbia to be used in the laboratory of nuclear-physical methods of the elemental analysis A compact cyclotron and a beam shaping system ensure an accelerated proton beam in a wide range of energies from 1 to 3 MeV with a spectrum width not more than 0.1%. Tests of the cyclotron system have been carried out at proton energies of 1.0, 1.7 and 3 MeV with the beam transport to the final diagnostic device.
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|